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Overview 

• Image selection 

• Ab-initio 3d reconstruction procedures 

• Movie processing



The ideal image: 

- high signal/noise ratio 
- mono-disperse homogeneous particles evenly spaced  
- random particle orientation 
- power spectrum showing strong and isotropic Thon rings to 

the Nyquist limit   

The real image: 

- noisy images 
- different levels of heterogeneity 
- different levels of orientation bias 
- low dose and weak specimen scattering attenuate the 

recovery of CTF modulation 

What is a good image?



Image selection

• And if I don’t see nice Thon rings?



• And if I don’t see nice Thon rings?

- was the microscope working optimally and properly aligned?  

Confirm the performance of the microscope at the time of data 
collection: 

If you are imaging specimens that are weak electron scatterers 
(i.e. imaging smaller proteins in unsupported ice) 

this is the best way to have some confidence in the recovery of high 
resolution information 

 



Image selection

• And if I don’t see nice Thon rings?

Imaging at the edges of holes including some of the supporting carbon  is a 
way to increase electron scattering required for the visualisation of the Thon 

rings in the image power spectrum 

exposure area

quantifoil holey carbon 



Covering the holey film with a continuous layer of thin carbon will significantly 
increase the strength of the Thon rings in the power spectrum of the recorded 

images allowing a much easier evaluation. 

This will somewhat increase the image background  -  but this is overcome by 
the advantages   

- it will also be suitable for samples with lower protein concentration - 
(~0.1-0.2 mg/ml protein is sufficient) 

Image selection

• And if I don’t see nice Thon rings?



• Good distribution of target particles

optimise number of molecular images per frame, but avoid contact 
and/or overlap 

- what to look for - 

Image selection



as thin as possible 
- but beware of possible exclusion of target particles when ice is too thin -

• Optimal ice thickness:

different regions of the same grid

ice too thin

Image selection

- what to look for - 



- even if molecular images can be identified in regions of thicker ice, the 
loss of high resolution information cannot be recovered during 

processing - 

Image selection

• Optimal ice thickness:

different regions of the same grid

ice too thick

- what to look for - 



Image selection

- minimise beam-induced motion/charging

• stability during exposure

- what to look for - 



Image selection

- minimal drift/astigmatism

• stability during exposure

- what to look for - 

drift astigmatism

…

minimise everything 
that may reduce the 

image contrast and/or 
the recovery of Thon 
rings on the image 

power spectra 



Charging on specimen 



Select for analysis images where you can clearly identify your particles and 
where you are confident high resolution information is preserved

• It can be more effective to do image selection at the time of data collection: 
  

- if you only record in good areas, it saves time going over and excluding 
all the bad frames afterwards and if you only save the good images the 
amount of data you have to handle is much reduced  

• If you take time to optimise your grids and if you have a grid where you know 
you have areas that reliably  yield good images then you may chose to do 
automated data collection

Image selection
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Fig. 10. Gallery of images of various specimens. Scale bars 500 Å. All the images shown in Figs 10 and 11 were taken at similar magnifi-
cations (1.75 Å/pixel) either on an FEI Polara or Krios at 3–4 µm defocus, 17 e Å−2 s−1 and 4s exposure. The images were taken on
Falcon-II/III detectors, except for the β-galactosidase, which was taken on a K2 detector. (a) Pyruvate dehydrogenase E2CD,
MW ∼1.6MDa. Specimen prepared by Peter Rosenthal in 2001. 5-fold, 3-fold and 2-fold views are clearly visible. (b) Complex I,
MW ∼900 kDa (Vinothkumar et al. 2014b). (c) β-galactosidase, MW ∼480 kDa (SigmaAldrich G3153; Chen et al. 2013). (d) Human
erythrocyte catalase, MW ∼240 kDa (SigmaAldrich C3566). The central empty region is where the ice is very thin. Surrounding this is a
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Fig. 10. Gallery of images of various specimens. Scale bars 500 Å. All the images shown in Figs 10 and 11 were taken at similar magnifi-
cations (1.75 Å/pixel) either on an FEI Polara or Krios at 3–4 µm defocus, 17 e Å−2 s−1 and 4s exposure. The images were taken on
Falcon-II/III detectors, except for the β-galactosidase, which was taken on a K2 detector. (a) Pyruvate dehydrogenase E2CD,
MW ∼1.6MDa. Specimen prepared by Peter Rosenthal in 2001. 5-fold, 3-fold and 2-fold views are clearly visible. (b) Complex I,
MW ∼900 kDa (Vinothkumar et al. 2014b). (c) β-galactosidase, MW ∼480 kDa (SigmaAldrich G3153; Chen et al. 2013). (d) Human
erythrocyte catalase, MW ∼240 kDa (SigmaAldrich C3566). The central empty region is where the ice is very thin. Surrounding this is a
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Gallery of Micrographs of macromolecules 

Pyruvate dehydrogenase, 
1600 kDa bovine Complex I, 900 kDa



Gallery of Micrographs of macromolecules 

circle of molecules where the catalase has been squeezed out and may be interacting with the air–water interfaces on both sides of the ice
film. Further from the centre of the hole where the ice is thicker, the molecules are in random orientations and, once the ice gets much
thicker at the edge of the hole, the molecules are even overlapping. (e) C-reactive protein, MW ∼124 kDa pentamer (specimen courtesy
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Fig. 10. (Continued).
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Beta galactosidase, 440 kDa



circle of molecules where the catalase has been squeezed out and may be interacting with the air–water interfaces on both sides of the ice
film. Further from the centre of the hole where the ice is thicker, the molecules are in random orientations and, once the ice gets much
thicker at the edge of the hole, the molecules are even overlapping. (e) C-reactive protein, MW ∼124 kDa pentamer (specimen courtesy
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Fig. 10. (Continued).
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Gallery of Micrographs of macromolecules 

Catalase, 236 kDa



of Glenys Tennent and Mark Pepys). Many 5-fold views are clearly visible with side views of the pentamers appearing as double dots or
lines. Occasional decamers can be seen where the pentamers dimerise. (f) haemoglobin, MW 64 kDa (SigmaAldrich H7379). (g) ovalbu-
min, MW ∼40 kDa (SigmaAldrich A5503). For these small proteins, the images appear as single dots. (h) lysozyme, MW ∼14 kDa
(SigmaAldrich L6876). Lysozyme molecules can be seen as individual very small dots, but still well above the noise level.
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Fig. 10. (Continued).
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Gallery of Micrographs of macromolecules 

C-reactive protein, 125 kDa



of Glenys Tennent and Mark Pepys). Many 5-fold views are clearly visible with side views of the pentamers appearing as double dots or
lines. Occasional decamers can be seen where the pentamers dimerise. (f) haemoglobin, MW 64 kDa (SigmaAldrich H7379). (g) ovalbu-
min, MW ∼40 kDa (SigmaAldrich A5503). For these small proteins, the images appear as single dots. (h) lysozyme, MW ∼14 kDa
(SigmaAldrich L6876). Lysozyme molecules can be seen as individual very small dots, but still well above the noise level.
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Fig. 10. (Continued).
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Gallery of Micrographs of macromolecules 

Haemoglobin, 64 kDa



Rosenthal (2012) developed amethod to allow small spot illumination of an ice-embedded specimen that prevents charge build up.
Theyusedanoff-axismulti-hole condenser aperture toprovideparaxial illumination that effectively neutralised the charge on the ice
by providing a source of secondary electrons to discharge it. They used up to 6 additional off-axis apertures to illuminate the
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Fig. 10. (Continued).
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Gallery of Micrographs of macromolecules 

Lysozyme, 14 kDa



film. It is well known that proteins are adsorbed and frequently denatured at most surfaces (Ramsden, 1994), including the air-
water surface, and the thickness of the adsorbed layer increases with time. Clearly, it would be advantageous to plunge-freeze the
thin film as soon as possible after its formation tominimise the number of times the suspended particles interact with the surface.

7. Conclusion
Apart from the increased cost, further improvements in detector performance will produce virtually painless improvements in
the attainable resolution, the amount of effort required or the ability to resolve multiple states using cryoEM. The biggest
reward in terms of improved signal in high-resolution images or movies will come if the problem of beam-induced movement
and image blurring in the early part of the exposure, corresponding to the first few frames of a movie could be cured. This
may require some new approach to specimen preparation such as the use of a thicker support with smaller holes into which
the ice-embedded molecules are trapped and frozen. Affordable entry-level instruments and more experience in specimen
preparation will also be very useful. Progress may even come from new and unexpected approaches. Whatever happens, it
is clear that cryoEM has a promising future.
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Fig. 12. Expected particle distribution on holey grids. The table lists the expected number of single particles in cryoEM, answering the
question ‘Given the concentration of the molecule of interest in mg ml−1 and the molecular weight (MW), how many particles should
you see in the image if the frozen specimen has the same concentration of molecules that you expect in free solution’. The number per
μm2 is given, as well as the expected particle separation for 800 Å thick ice. The boxes shown in red represent a distribution that is too
dense, those in blue too sparse, and those in green about right. If images for the grid show either many more or many less particles than
this, then something unexpected is going on. For example all the particles might be sticking to the carbon (if too few are seen in the
holes) or the blotting operation might be concentrating the particles (if there are too many), but many different explanations are possible.
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 Initial Model generation



Ab initio 3D reconstruction

• Standard	3D	single	par0cle	analysis	consists	of	itera0ve	image	
alignment	and	angular	assignment	with	respect	to	a	3D	map	
(typically	that	obtained	in	the	previous	itera0on)	

- But	where	does	this	all	start?	Do	we	need	a	model	at	all?	

- Which	ini0al	reference	3d	map	should	we	use	for	the	first	
itera0on?	

- is	one	map	sufficient	or	mul0ple	maps	required?



Ab initio 3D reconstruction

1. You	may	be	lucky	enough	to	already	have	an	accurate	3D	structure	
closely	related	to	your	sample	(eg	the	ribosome)								

2. Otherwise	you	will	need	to	calculate	a	first	3D	map	from	your	(2D)	
molecular	images	or	other	means	

3. It	is	possible	to	use	a	PDB	model	from	X-ray	but	needs	to	be	correctly	
filtered	to	eliminate	model	bias

Possible	sources	of	a	star/ng	model



2D classes averages - useful tool to access your data

Rubinstein et al 2012



AChR	-	molecule	with	preferred	orienta6on

Micrograph

Class average



The	actual	reconstruc0on	algorithms	are	
based		on	the	projec0on/sec0on	rela0on	for	
object	and	transform	

The	challenge	is	to	determine	the	angular	
rela0on	of	the	2D	projected	images	to	the	3D	
specimen

Ab initio 3D reconstruction



Ab initio 3D reconstruction

Cau0on:	you	can	always	get	a	3D	volume	from	your	data



Methods - initial model generation

• Random conical tilt 

• Orthogonal tilt (a variant of Random conical tilt) 

• Tomography 

• Common lines - fourier space 

                          -  real space 

• PRIME - Probabilistic Initial 3D model generation



incident	beam

specimen

projec0on	image

Radermacher	M.	(1988)	.	Electron	Microsc.	Tech.	9,	359

• Projec0ons	of	par0cles	related	only	by	in-plane	rota0ons	are	iden0cal,	but	if	the	specimen	is	
0lted	the	projec0ons	will	correspond	to	different	views	of	the	specimen.		

• Two	images	are	recorded	at	first	a	defined	0lt	angle	followed	by	another	at	0	0lt.	
• In-plane	rota0on	angles	between	different	projec0ons	can	de	determined	by	the	alignment	
of	the	un-0lted	specimen	projec0ons	,	which	combined	with	the	known	0lt	angle,	defines	
the	rela0ve	orienta0on	of	the	corresponding	0lt	projec0ons

Random conical tilt



• A	3D	volume	can	be	calculated	from	the	par0cles	in	the	0lted	image

Slide	from	Nicolas	Boisset

Random conical tilt



A typical procedure in Random conical tilt (RCT) image 
processing

1. Pick tilt pairs - particle coordinates, TiltAxis in both images, tilt angle 

2. Particles are boxed out, rotated such that the direction of the tilt axis 

coincides with the Y-axis in each image and contrast normalised 

3. Classification (2D) of untilted particles 

4. Centering of tilted particles, by aligning with the corresponding centered 

untilted particles 

5. 3D reconstruction using only centered tilted particles (SHX, SHY=0) 

         PHI = in-plane rotation (from 3) 
         THETA = Tilt angle (from 1) 
         PSI = 0 [due to rotation in (2)]



• Works	be[er	with	samples	with	biased	orienta0ons	on	the	grid	

• Technically	very	demanding	

• It	is	the	only	ab-ini0o	reconstruc0on	procedure	that	may	give	the	
correct	handedness	of	the	calculated	structure

Random conical tilt



Orthogonal tilt

Leschziner	A,	2010



Orthogonal tilt

• needs	samples	with	all	possible	orienta0ons	on	the	grid	

• Technically	very	demanding	

• In	OTR	(orthogonal	0lt	reconstruc0on),	the	images	used	for	
alignment	and	classifica0on	comes	from	one	of	the	0lted	image.	



Sub-tomogram averaging

3D	averaging	of	repea0ng	features	in	tomograms.

Briggs,	Curr	Op	Struct	Biol,	2013



Ab initio 3D reconstruction - common lines

Projection slice theorem

The	orienta/on	of	a	par/cle	can	be	determined	by	
the	existence	of	a	set	of	pairs	of	‘common	lines’	in	
the	2D	transform	of	any	view	of	a	symmetrical	

par/cle	-	Crowther	1971	



Common line - fourier space

Crowther		1971



Based	on	the	“common-line	projec0on”	theorem:

Any	two	2D	projec/ons	of	a	3D	object	have	at	least	
one	common	1D	line	projec/on

1D	projec0on	line

2D	projec0on

Sinogram/Radon	transform:	compila0on	of	1D	projec0on	lines	of	a	2D	projec0on	
																																																			around	a	360O	rota0on

de
ns
ity

Common line - real space approach

van	Heel	et	al.	(1987)



Angular reconstitution

van	Heel	et	al.	(1997)

D5 symmetry

1D projection image - Sinogram



Angular reconstitution

van	Heel	et	al.	(1997),	van	
Heel	1987

sinogram correlation function



• Requires	high	signal	to	noise	ra0o	(good	class	averages)	

• It	requires	a	rela0vely	large	number	of	good	classes	represen0ng	
dis0nct	orienta0ons	of	the	specimen	

• It	requires	the	2D	classes	to	be	on	the	same	origin	(not	always	
achieved	during	the	2D	classifica0on)

Common line - real space approach



PRIME 
(Probabilistic Initial 3D model generation)

of the algorithm must be improved as well. The 3D ML
approaches developed have not been shown to converge
without the use of an accurate initial 3D model (Scheres,
2012b; Scheres et al., 2007a).

We report a probabilistic initial 3D model generation proce-
dure for single-particle cryo-EM (PRIME) that, in a single step
and without prior structural knowledge, can generate an accu-
rate initial 3D map directly from EM images. In all tested cases,
the procedure converges to the correct map whether a 3D
reconstruction of an unrelated molecule, a random model, or
random noise is used for initialization.

Methods
Our image processing workflow is illustrated schematically and
compared with a typical single-particle reconstruction protocol
in Figure 1. The initial random model is projected into 2D
images in evenly distributed orientations and correlations
between each particle image and the reference images are
calculated. Standard methods assign the single highest scoring
orientation to each image. In contrast, our method assigns a
range of high-scoring orientations (Figure 1D), the contribution
of each image to the 3D reconstruction being determined by
weight factors that are proportional to the correlation. The
alignment of each image is based on the average of many
likely alignments. Multiple copies of the same image are
included in the 3D reconstruction by sampling all orientations
that improve the correlation and assigning them different
weights. Thus, the 3D reconstruction becomes a weighted

Figure 1. Schematic Representation of the
Image Processing Workflow
(A) Individual ribosome cryo-EM images.

(B) The workflow of standard single-particle image

processing: (1) grouping of images based on

similarity and generation of averages with

improved SNR, (2) generation of a preliminary low-

resolution model, and (3) map refinement by

repeated cycles of individual particle image

alignment and volume reconstruction.

(C) The workflow of our approach: (1) generation of

an accurate 3D representation of the imaged

molecule in a single optimization step.

(D) Schematic representation of probabilistic

versus deterministic image alignment for one

single particle image. The radial lines represent 3D

orientations in the discrete search space. Our

probabilistic alignment assigns each particle

image to a range of high-scoring orientations with

weights. Sampling a weight distribution for all

orientations that improve the correlation with

randomly positioned delta functions generates

sparse orientation weights during search. Deter-

ministic image alignment assigns each particle

image a single orientation, assumed to be the

correct one.

average of the images assigned to
each orientation. The computational de-
mands of one iteration of our procedure
correspond (on average) to about one
iteration of standard deterministic 3D

alignment (Baker et al., 2010; Frank et al., 1996; Harauz and
Ottensmeyer, 1984; Ludtke et al., 1999; Penczek et al., 1994;
Radermacher, 1994; Sanz-Garcı́a et al., 2010; Shaikh et al.,
2008; van Heel et al., 1996).

Probabilistic Orientation Search
Define a configuration S

S= ðfj1; q1;41g1;.; fjn; qn;4ngnÞ˛U (Equation 1)

of the 3n rotational variables of the optimization problem, where
n is the number of images. The origin shift parameters are not
included in the formalism for clarity. The search spaceU consists
of all possible orientations and all possible combinations of ori-
entations for the n images.
We use stochastic hill climbing to explore the search space U

and find the alignment that gives the best 3Dmodel, as judged by
the global score given by Equation 4 below. For the data sets of
5,000 images analyzed here (see Results) this corresponds to a
search of more than 25,000 parameters. While basic hill climbing
always chooses the steepest uphill move, stochastic hill climbing
randomly selects among the possible uphill moves (Russel and
Norvig, 2003). This reduces the tendency to get trapped in
local optima due to greedy acceptance of neighboring moves.
The stochastic search introduces large fluctuations capable of
rearranging major parts of a system. A neighborhood G(S)
maps S to S

0

S/S0˛GðSÞ (Equation 2)

Structure

Ab Initio Single-Particle Cryo-EM Reconstruction

1300 Structure 21, 1299–1306, August 6, 2013 ª2013 Elsevier Ltd All rights reserved

of the algorithm must be improved as well. The 3D ML
approaches developed have not been shown to converge
without the use of an accurate initial 3D model (Scheres,
2012b; Scheres et al., 2007a).

We report a probabilistic initial 3D model generation proce-
dure for single-particle cryo-EM (PRIME) that, in a single step
and without prior structural knowledge, can generate an accu-
rate initial 3D map directly from EM images. In all tested cases,
the procedure converges to the correct map whether a 3D
reconstruction of an unrelated molecule, a random model, or
random noise is used for initialization.

Methods
Our image processing workflow is illustrated schematically and
compared with a typical single-particle reconstruction protocol
in Figure 1. The initial random model is projected into 2D
images in evenly distributed orientations and correlations
between each particle image and the reference images are
calculated. Standard methods assign the single highest scoring
orientation to each image. In contrast, our method assigns a
range of high-scoring orientations (Figure 1D), the contribution
of each image to the 3D reconstruction being determined by
weight factors that are proportional to the correlation. The
alignment of each image is based on the average of many
likely alignments. Multiple copies of the same image are
included in the 3D reconstruction by sampling all orientations
that improve the correlation and assigning them different
weights. Thus, the 3D reconstruction becomes a weighted

Figure 1. Schematic Representation of the
Image Processing Workflow
(A) Individual ribosome cryo-EM images.

(B) The workflow of standard single-particle image

processing: (1) grouping of images based on

similarity and generation of averages with

improved SNR, (2) generation of a preliminary low-

resolution model, and (3) map refinement by

repeated cycles of individual particle image

alignment and volume reconstruction.

(C) The workflow of our approach: (1) generation of

an accurate 3D representation of the imaged

molecule in a single optimization step.

(D) Schematic representation of probabilistic

versus deterministic image alignment for one

single particle image. The radial lines represent 3D

orientations in the discrete search space. Our

probabilistic alignment assigns each particle

image to a range of high-scoring orientations with

weights. Sampling a weight distribution for all

orientations that improve the correlation with

randomly positioned delta functions generates

sparse orientation weights during search. Deter-

ministic image alignment assigns each particle

image a single orientation, assumed to be the

correct one.

average of the images assigned to
each orientation. The computational de-
mands of one iteration of our procedure
correspond (on average) to about one
iteration of standard deterministic 3D

alignment (Baker et al., 2010; Frank et al., 1996; Harauz and
Ottensmeyer, 1984; Ludtke et al., 1999; Penczek et al., 1994;
Radermacher, 1994; Sanz-Garcı́a et al., 2010; Shaikh et al.,
2008; van Heel et al., 1996).

Probabilistic Orientation Search
Define a configuration S

S= ðfj1; q1;41g1;.; fjn; qn;4ngnÞ˛U (Equation 1)

of the 3n rotational variables of the optimization problem, where
n is the number of images. The origin shift parameters are not
included in the formalism for clarity. The search spaceU consists
of all possible orientations and all possible combinations of ori-
entations for the n images.
We use stochastic hill climbing to explore the search space U

and find the alignment that gives the best 3Dmodel, as judged by
the global score given by Equation 4 below. For the data sets of
5,000 images analyzed here (see Results) this corresponds to a
search of more than 25,000 parameters. While basic hill climbing
always chooses the steepest uphill move, stochastic hill climbing
randomly selects among the possible uphill moves (Russel and
Norvig, 2003). This reduces the tendency to get trapped in
local optima due to greedy acceptance of neighboring moves.
The stochastic search introduces large fluctuations capable of
rearranging major parts of a system. A neighborhood G(S)
maps S to S

0

S/S0˛GðSÞ (Equation 2)
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the procedure converges to the correct map whether a 3D
reconstruction of an unrelated molecule, a random model, or
random noise is used for initialization.

Methods
Our image processing workflow is illustrated schematically and
compared with a typical single-particle reconstruction protocol
in Figure 1. The initial random model is projected into 2D
images in evenly distributed orientations and correlations
between each particle image and the reference images are
calculated. Standard methods assign the single highest scoring
orientation to each image. In contrast, our method assigns a
range of high-scoring orientations (Figure 1D), the contribution
of each image to the 3D reconstruction being determined by
weight factors that are proportional to the correlation. The
alignment of each image is based on the average of many
likely alignments. Multiple copies of the same image are
included in the 3D reconstruction by sampling all orientations
that improve the correlation and assigning them different
weights. Thus, the 3D reconstruction becomes a weighted
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average of the images assigned to
each orientation. The computational de-
mands of one iteration of our procedure
correspond (on average) to about one
iteration of standard deterministic 3D

alignment (Baker et al., 2010; Frank et al., 1996; Harauz and
Ottensmeyer, 1984; Ludtke et al., 1999; Penczek et al., 1994;
Radermacher, 1994; Sanz-Garcı́a et al., 2010; Shaikh et al.,
2008; van Heel et al., 1996).

Probabilistic Orientation Search
Define a configuration S

S= ðfj1; q1;41g1;.; fjn; qn;4ngnÞ˛U (Equation 1)

of the 3n rotational variables of the optimization problem, where
n is the number of images. The origin shift parameters are not
included in the formalism for clarity. The search spaceU consists
of all possible orientations and all possible combinations of ori-
entations for the n images.
We use stochastic hill climbing to explore the search space U

and find the alignment that gives the best 3Dmodel, as judged by
the global score given by Equation 4 below. For the data sets of
5,000 images analyzed here (see Results) this corresponds to a
search of more than 25,000 parameters. While basic hill climbing
always chooses the steepest uphill move, stochastic hill climbing
randomly selects among the possible uphill moves (Russel and
Norvig, 2003). This reduces the tendency to get trapped in
local optima due to greedy acceptance of neighboring moves.
The stochastic search introduces large fluctuations capable of
rearranging major parts of a system. A neighborhood G(S)
maps S to S

0

S/S0˛GðSÞ (Equation 2)
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to facilitate local search. The neighborhood G(S) is defined by
keeping all but the i:th particle image orientation fixed and vary-
ing the orientation of the i:th particle image (one-exchange
neighborhood). Stochastic hill climbing scans the search space
by sequentially updating a single configuration S. The global
score (Equation 4, below) is a weighted average of individual
scores li. An individual score li is defined as the correlation
between the i:th image and a projection of the reconstruction
in orientation {ji, qi, fi}. The correlation li is calculated in real
space, assuming statistically normalized images (zero pixel
average and unit variance)

li =
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; (Equation 3)

where X(i) is the i:th particle image, Y(k) is the k:th reference image,
and npix is the number of pixels in the polar image representation.
For clarity, consider only the 3D rotational variables of the

alignment problem. Our optimization algorithm maximizes the
goal function g

g=

Zn

1

di

Zp

1

dj

Z2p

0

dqlqijw
q
ij ; (Equation 4)

where p is the number of projection directions, lqij denotes the
cross-correlation coefficient (Equation 3) between the i:th parti-
cle image and the j:th reference image for in-plane rotation q,
and wq

ij denotes the strength of association (weight) between
particle i and orientation j,q. We are looking for the n distributions
of orientation weights that maximize g so that most weights are
zero (sparse distribution). Determination of the number of
nonzero weights is based on the selected resolution limit, the
molecular radius, and the angular resolution of the discrete 3D
orientation search space (as described below).
The reconstruction algorithm is resolution-limited using a low-

pass filter with a cosine tapering edge. A subset of high-scoring
(feasible) orientations Ri is defined and its size r is equal to the
number of orientations per particle image included in the weight-
ing scheme. The size of the feasible subset of orientations r is
defined based on the low-pass limit llp (in angstroms) by calcu-
lating the average number of projection directions within d ra-
dians from any projection direction of the search space, where

d = arctan

$
llp
rmol

%
(Equation 5)

and rmol is the molecular radius (in angstroms). The size of the
feasible subset of orientations r decreases with increasing low-
pass limit resolution and increasing molecular radius. The pro-
cess is initialized with a random model—a spherical density
with a radius approximately equal to the particle radius. The pro-
jection directions of the discrete search space are generated by
taking a spiraling path on the unit sphere to generate p orienta-
tions (Saff and Kuijlaars, 1997). The reference images are gener-
ated by low-pass filtering the current reconstruction, projecting
it, and transforming the resulting projection images into polar co-

ordinates (Cong et al., 2003; Penczek et al., 1994; Radermacher,
1994). The i:th particle image is low-pass filtered, shifted over a
discrete grid of translations, and transformed into polar coordi-
nates. In-plane transformations of the i:th particle image are
definedwith respect to reference images by searching the neigh-
borhood GðSÞ (projection matching).
As described above, lqij denotes the cross-correlation between

the i:th particle image and the j:th reference image for in-plane
rotation q. A subset Qi˛U of feasible orientations is defined
by requiring lqijRli;best. Selecting r orientations that satisfy
lqijRli;best from Qi ˛U for inclusion in the weighting scheme
searches in-plane rotations and projection directions. Feasible
orientations are selected hierarchically. First, r projection direc-
tions are selected randomly (using the highest scoring in-plane
rotation for each projection direction). Next, one in-plane rotation
per projection direction is selected randomly from the set of in-
plane rotations that improve the correlation. In summary, new
feasible orientations are accepted with a probability determined
by the uniform distribution over all orientations that improve the
correlation. If no orientations improve the correlation, the r high-
est scoring orientations are included in the weighting scheme.
The indeterminism of the correlation function defines a probabi-
listic rule for moving from the current alignment to the new
neighbor. Alignments that are more robust toward uncertainties
in the reconstruction are found by modeling this uncertainty in
the set of ‘‘acceptable’’ alignments. Probabilistic orientation
assignment accounts for the large errors in the goal function
landscape introduced by noise. The i:th particle image’s feasible
subset of orientations is denoted Ri3Qi. Our weighting scheme
is independent of any image formation model or assumption of
noise statistics. An alignment S is now defined in a search space
of orientation weights, where every particle image is assigned
one weight factor per discrete orientation. The correlation values
in the feasible subset are normalized to the interval [0,1] to allow
better discrimination between the orientations

hq
ij =

expfðlqij # lminÞ=Dlg# 1

expð1Þ # 1
; (Equation 6)

where lmin is the minimum correlation and Dl = lmax#lmin is the
difference between the maximum and minimum correlation in
the feasible subset. The orientation weight wq

ij for particle i pro-
jection direction j and in-plane rotation q is calculated

wij =

8
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>>>:

exp
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0 else

: (Equation 7)

The variance of the orientation weight distribution depends on
themap quality and the SNR of the images. Large reconstruction
errors or high noise flattens the orientation weight distribution
and spreads a single image over a large region of the search
space, accounting for the indeterminism of the cross-correlation
function. In contrast, an image with high SNR aligned to an accu-
rate reconstruction centers the orientation weight distribution
energy on a few closely lying orientations. All orientations outside
the feasible subset are assigned a weight of zero. We call this
scheme a sparse orientation weighting approach, because
most of the orientations receive a weight of zero. When the
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keeping all but the i:th particle image orientation fixed and vary-
ing the orientation of the i:th particle image (one-exchange
neighborhood). Stochastic hill climbing scans the search space
by sequentially updating a single configuration S. The global
score (Equation 4, below) is a weighted average of individual
scores li. An individual score li is defined as the correlation
between the i:th image and a projection of the reconstruction
in orientation {ji, qi, fi}. The correlation li is calculated in real
space, assuming statistically normalized images (zero pixel
average and unit variance)
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where X(i) is the i:th particle image, Y(k) is the k:th reference image,
and npix is the number of pixels in the polar image representation.
For clarity, consider only the 3D rotational variables of the

alignment problem. Our optimization algorithm maximizes the
goal function g

g=

Zn

1

di

Zp

1

dj

Z2p

0

dqlqijw
q
ij ; (Equation 4)

where p is the number of projection directions, lqij denotes the
cross-correlation coefficient (Equation 3) between the i:th parti-
cle image and the j:th reference image for in-plane rotation q,
and wq

ij denotes the strength of association (weight) between
particle i and orientation j,q. We are looking for the n distributions
of orientation weights that maximize g so that most weights are
zero (sparse distribution). Determination of the number of
nonzero weights is based on the selected resolution limit, the
molecular radius, and the angular resolution of the discrete 3D
orientation search space (as described below).
The reconstruction algorithm is resolution-limited using a low-

pass filter with a cosine tapering edge. A subset of high-scoring
(feasible) orientations Ri is defined and its size r is equal to the
number of orientations per particle image included in the weight-
ing scheme. The size of the feasible subset of orientations r is
defined based on the low-pass limit llp (in angstroms) by calcu-
lating the average number of projection directions within d ra-
dians from any projection direction of the search space, where

d = arctan
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and rmol is the molecular radius (in angstroms). The size of the
feasible subset of orientations r decreases with increasing low-
pass limit resolution and increasing molecular radius. The pro-
cess is initialized with a random model—a spherical density
with a radius approximately equal to the particle radius. The pro-
jection directions of the discrete search space are generated by
taking a spiraling path on the unit sphere to generate p orienta-
tions (Saff and Kuijlaars, 1997). The reference images are gener-
ated by low-pass filtering the current reconstruction, projecting
it, and transforming the resulting projection images into polar co-

ordinates (Cong et al., 2003; Penczek et al., 1994; Radermacher,
1994). The i:th particle image is low-pass filtered, shifted over a
discrete grid of translations, and transformed into polar coordi-
nates. In-plane transformations of the i:th particle image are
definedwith respect to reference images by searching the neigh-
borhood GðSÞ (projection matching).
As described above, lqij denotes the cross-correlation between

the i:th particle image and the j:th reference image for in-plane
rotation q. A subset Qi˛U of feasible orientations is defined
by requiring lqijRli;best. Selecting r orientations that satisfy
lqijRli;best from Qi ˛U for inclusion in the weighting scheme
searches in-plane rotations and projection directions. Feasible
orientations are selected hierarchically. First, r projection direc-
tions are selected randomly (using the highest scoring in-plane
rotation for each projection direction). Next, one in-plane rotation
per projection direction is selected randomly from the set of in-
plane rotations that improve the correlation. In summary, new
feasible orientations are accepted with a probability determined
by the uniform distribution over all orientations that improve the
correlation. If no orientations improve the correlation, the r high-
est scoring orientations are included in the weighting scheme.
The indeterminism of the correlation function defines a probabi-
listic rule for moving from the current alignment to the new
neighbor. Alignments that are more robust toward uncertainties
in the reconstruction are found by modeling this uncertainty in
the set of ‘‘acceptable’’ alignments. Probabilistic orientation
assignment accounts for the large errors in the goal function
landscape introduced by noise. The i:th particle image’s feasible
subset of orientations is denoted Ri3Qi. Our weighting scheme
is independent of any image formation model or assumption of
noise statistics. An alignment S is now defined in a search space
of orientation weights, where every particle image is assigned
one weight factor per discrete orientation. The correlation values
in the feasible subset are normalized to the interval [0,1] to allow
better discrimination between the orientations
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The variance of the orientation weight distribution depends on
themap quality and the SNR of the images. Large reconstruction
errors or high noise flattens the orientation weight distribution
and spreads a single image over a large region of the search
space, accounting for the indeterminism of the cross-correlation
function. In contrast, an image with high SNR aligned to an accu-
rate reconstruction centers the orientation weight distribution
energy on a few closely lying orientations. All orientations outside
the feasible subset are assigned a weight of zero. We call this
scheme a sparse orientation weighting approach, because
most of the orientations receive a weight of zero. When the
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orientation weights have been calculated for all particle images,
a volume is reconstructed using direct Fourier inversion (Elmlund
and Elmlund, 2012). The reconstruction is obtained by gridding
every particle image i to the Fourier volume in all orientations
of its feasible subset of orientations Ri, while multiplying the par-
ticle Fourier transform with its corresponding orientation weight.
When all images have been gridded, the Fourier volume is
normalized and a new reference volume is generated by reverse
Fourier transformation. The probabilistic volume reconstruction
algorithm is described in detail in the Supplemental Experimental
Procedures. A flowchart for the method is presented in Figure 2.

RESULTS

To demonstrate the robustness of our approach toward initializa-
tion, we performed alignment of 5,000 cryo-EM images of the
ribosome (Frank, 2009), using an initial 3D model of an unrelated
molecule—RNA polymerase II—scaled to the size of a ribosome.
The progress of the reconstruction is depicted in Figure 3A
(Movies S1, S2, and S3 available online). After a few iterations,
the erroneous initial model is transformed into the characteristic
ribosome shape. We concluded that the algorithm in this case
eliminates bias introduced by an initial 3D model that does not
faithfully represent the imaged molecule.

We repeated the ribosome reconstruction process three
times, using different random 3D models for initialization (Fig-
ure 3B). The final maps agreed to a resolution higher than
13 Å, as measured by the FSC = 0.143 criterion (Rosenthal and
Henderson, 2003; Table 1).

A set of 5,000 GroEL images was selected randomly from a
larger data set of!50,000 images (Stagg et al., 2008). The align-
ment was initialized with a random model without assuming any
point-group symmetry. The process converged after 25 itera-
tions (Figure 3C). We compared our map with a previously ob-
tained GroEL cryo-EM map (Ludtke et al., 2004) that had been
low-pass filtered to the corresponding resolution (Figure 3C,
lower panel). The maps agreed to a resolution of 12.2 Å as
measured by the FSC = 0.143 criterion.

A set of 5,000 beta-galactosidase images was selected
randomly from a larger data set of !40,000 images (courtesy
of R. Henderson). The alignment was initialized with a random
model without assuming any point-group symmetry. The pro-
cess converged after 25 iterations. We repeated the alignment,
using random noise for initialization. The correlation coefficient
between the two unfiltered volumes, generated by initialization
from different starting points, was 0.95 (Figure S1). To validate
the reconstructions, we docked the available X-ray structure
(Protein Data Bank [PDB] code 3VD3) to one of the maps (Fig-
ure 3D). The progress of the reconstruction for one of the asym-
metric reconstruction runs is depicted in Movie S4.

Finally, we tested the robustness of our algorithm on simulated
data and concluded that an accurate initial 3D map can be re-
constructed from as few as 1,000 very noisy images (SNR =
0.01; Figure 4).

DISCUSSION

Standard projection image alignment or projection matching is
often erroneously classified as an exhaustive search procedure.

Scanning through the entire search space would mean evalu-
ating all possible orientations and all possible combinations of
orientations. A systematic search of all possible image align-
ments is computationally intractable even for a few hundred
images (time estimates would be given in CPU years).
Standard projection matching is a greedy local search proce-

dure. It uses a one-exchange neighborhood, defined by search-
ing all orientations for one particle image. This is done for all
particle images, followed by update of themodel. The distinction
between exploring the neighborhood exhaustively and exploring
the entire search space exhaustively is important. Greedy local

Figure 2. Flowchart for the Method
A low-pass limit llp and CTF-corrected images X are inputted, where ‘‘CTF-

corrected images’’ refers to images corrected using the simple heuristic of

binary phase flipping, adopted in numerous image-processing packages

(Frank et al., 1996; Ludtke et al., 1999; Tang et al., 2007; van Heel et al., 1996).

A configuration S is initialized randomly and Sbest is set to S. The top loop

controls the maximum number of iterations m. The process is repeated until

little further change occurs in the most likely orientations. The j:th iteration

reconstructs a volume, low-pass filters it, projects it in all projection directions

of the neighborhood G(S), and calculates polar reference images. The

second loop is over particle image indices i. The particle image is read, low-

pass filtered, and transformed into polar coordinates. The stochastic

search first evaluates the correlation li,best for the current best orientation

{ji,best, qi,best, fi,best}, then searches orientations in random order to define a

subset Ri 3 Qi of feasible orientations that satisfy lqijRli;best and stops when r

orientations have been found. All nonzero orientation weights are calculated

and the new best configuration Sbest is written to file.
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Complex I - initial model generated with EMAN2 



Complex	I	RCT

and the same conformation. Reconstructions are calculated for each
group separately by use of the corresponding tilted views. The 3-D recon-
structions of all classes are compared and those that differ only in the
orientation in space are merged. Those that show different structures are
left as separated classes.

2.1. Digitization

Images are digitized, usually with the best resolution of the scanner. The pixel
size is increased by binning to an appropriate value for the following image
processing, maintaining a balance between the best expected resolution and
the dataset size. The factor between the final pixel size of the digitized images
and the best resolution expected in the 3-D reconstruction should be at least 3,
so that possible interpolation errors during image processing do not result in a
loss of final resolution. Important in the scanning step is the conversion of film
transparencies to optical densities. This conversion must be consistent
throughout the dataset. The conversion is not linear, and inconsistencies
can lead to loss of resolution when images are combined. For scanners with

Figure 1.1 Tilt pair of Y. lipolytica Complex I. Top left, 0! image; top right, tilt image.
Arrows point to particle pairs in the tilt and 0! image. Tilt axis horizontal. Scale bar
1000 Å. Bottom, Gallery of a few single particles boxed out of the 0! image. Scale bar
100 Å.

Visualizing Flexibility by 3-D Electron Microscopy 7

reference alignment, correspondence analysis, and classification before fur-
ther 3-D reconstruction. A reconstruction calculated from the complete
subset 2 (Fig. 1.5) showed a resolution of 24 Å determined with the Fourier
Shell Correlation criterion and a 0.3 fixed cutoff value. The reconstruction
shows the main characteristic features that were also observed in the recon-
structions calculated after finer classification. Clearly visible are the domains
in the matrix arm, numbered 1 to 5, a central membrane protuberance
(CMP) pointing from the membrane arm toward the mitochondrial matrix,
and a distal membrane protuberance (DMP). It can be speculated that the
two protuberances are in close neighborhood to the hydrophobic subunits
ND4 and ND5, candidates for active proton pumping subunits.

The detailed analysis of the dataset led to a classification into 8 classes
(Fig. 1.6A), with memberships of 507, 1921, 1960, 112, 1674, 2538, 172,
and 2002 particles. 3-D structures were calculated only for classes 2, 3, 5, 6,
and 8, which showed sufficiently high membership (Fig. 1.6B). The
final resolutions of the five reconstructions were 16.5 Å, 22 Å, 20.5 Å,
18.5 Å, and 18.5 Å, respectively. It is noteworthy that the finer classification
resulted in 3-D structures with higher resolution, even though the dataset
size for each reconstruction was substantially smaller than for the combined
reconstruction. Although all the major features are visible in all reconstruc-
tions, the finer classification reveals higher resolution variations in both the
central membrane protuberance and in the matrix arm. Significantly, when
Complex I is viewed from the ‘‘back’’ of the matrix arm, the lower

DMP
CMP

1
2

5
6

1
2

4
3

Figure 1.5 3-D reconstruction from combined classes 1 and 8 to 13. A clear domain
structure is visible in the matrix arm. The domains are numbered 1 through 6.
The membrane arm shows a central membrane protuberance (CMP) and a distal
membrane protuberance (DMP). Scale bar 100 Å.
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PaaZ	-	a	bifunc6onal	enzyme

Micrograph Class averages
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PaaZ	-	map	aSer	refinement
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None of these methods are perfect – they don’t get it right all the 
time 

The ab initio 3D reconstruction of low symmetry small molecular 
weight specimen is in particular challenging 

Make use of any prior information (known biochemical information/
crystal structure) and validation methods 

At all stages be very critical of your results!!
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resolution maps



Imaging of HepatitisB viral core with a Falcon detector

Microscope       Polara 
Magnification    104,000 
Dose                 ~25 e-/Å2 

No. of frames    33 
Exposure           2S

HepB core - ~4 MDa 

Falcon - CMOS detector



Summed image Movies - single frames



Single frame

0.6 e-/pixel

Average of 9 frames

5.4 e-/pixel



Beam-induced movement of single particles



Beam-induced damage in the first few electrons

Initial fast movement Radiation damage



regions near the metal grid bars of the EM grid does the temperature fall more slowly due to the thermal inertia of the grid
bar, so there is a 3–5 µm wide region near each grid bar where the ice is frequently crystalline. The cooling process produces
different volume changes in all three elements of the ‘grid’ structure, namely the metal framework, the support film and
the ice.

First the width and spacing of the grid bars, which are normally made from copper or sometimes gold, shrinks by 0.2% as the
temperature drops from 4 °C to −180 °C. Second, the carbon film shrinks by much less, since its coefficient of linear
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Fig. 6. Schematic of 300 keV electron trajectories, reproduced from McMullan et al. (2009c), showing a Monte Carlo simulation of
300 keV electron tracks in silicon. After backthinning to 35 µm, only those parts of the electron tracks highlighted in red would contrib-
ute to the recorded signal. Before backthinning, the additional white tracks would contribute a low-resolution component to the signal to-
gether with contributions to the noise at all spatial frequencies. The overall thickness of the silicon in the figure is 350 µm with the 35
µm layer that remains after backthinning shown in grey.
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Fig. 7. Plot of the B-factors or signal at 7 Å resolution in typical movie sequences, reproduced from Henderson (2015) with permission.

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

10

Different data sets - same pattern

Vinothkumar & Henderson 2016;  Henderson 2015



Vinothkumar et al., 2013; Scheres et al., 2014

Progressive increase in resolution of HepB viral core (<1000 
particles)

4.94 Å

4.14 Å 3.9 Å
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