Point Group Symmetries

Manidipa Banerjee
Assistant Professor
Indian Institute of Technology, Delhi

Basic Definitions

Symmetry Element: a point, line or plane about which a symmetry operation is performed

Symmetry Operation: a real or imagined movement of a body about a symmetry element, such that after movement, every point on the object is coincident with an equivalent point.

Proper Rotation: No change of handedness occurs

Improper Rotation: A change of handedness occurs

Elements of symmetry

- Point
- Line
- Plane
- Translation
- Combination of above

Symmetry elements and operations

Element	Operation	Symbol
none	identity	E
Proper rotation axis	Rotate by 360°/n	Cn
Mirror plane	Reflection	σ
Inversion center	Inversion	i
Improper rotation axis	Rotate by 360°/n, then reflect perpendicular to axis	Sn

Symmetry elements and operations

E: identity operation, all molecules have E $E = C_1$

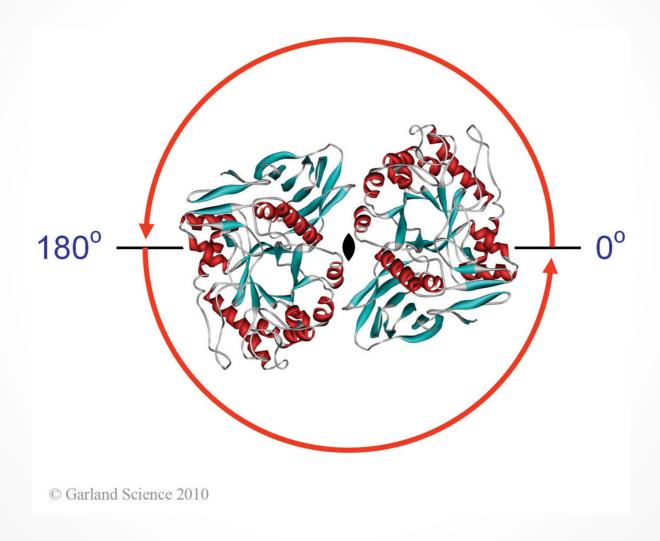
 C_n : proper rotation n principal (highest) axis C_2 axis perpendicular to central $C_{n'}$ called C_2' axis

 σ : mirror plane σ parallel to C_n is vertical: σ_v σ parallel to C_n and bisecting 2 C_2 ′ is dihedral: σ_d σ perpendicular to C_n is horizontal: σ_h

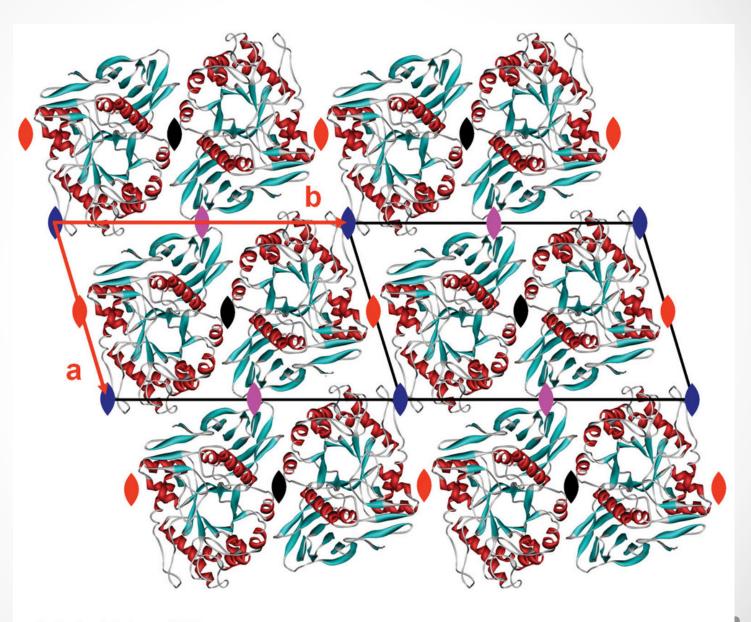
i = inversion center
 all atoms moved through the inversion center to an equal distance on the opposite side
 i may or may not be atomic center

Sn = improper rotation axis combination rotation/reflection n_{odd} requires both C_n and σ_h n_{even} may or may not have C_n and σ_h $S_1 = \sigma$, $S_2 = i$

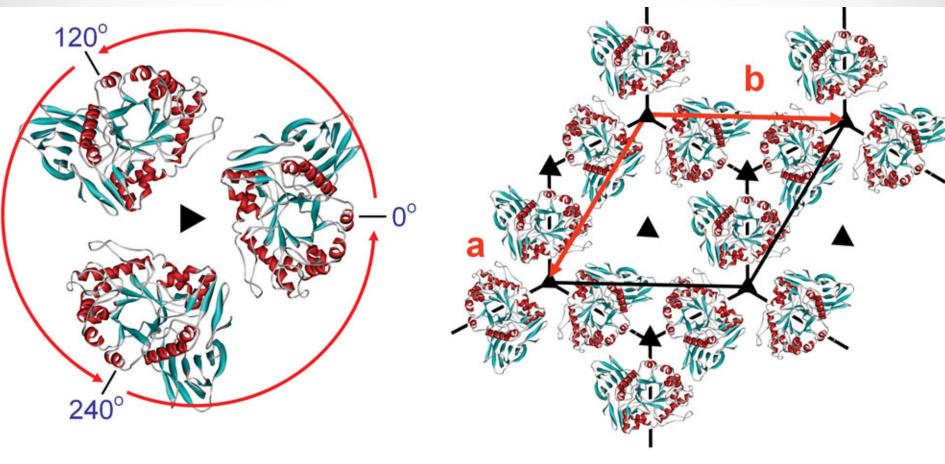
Rotation



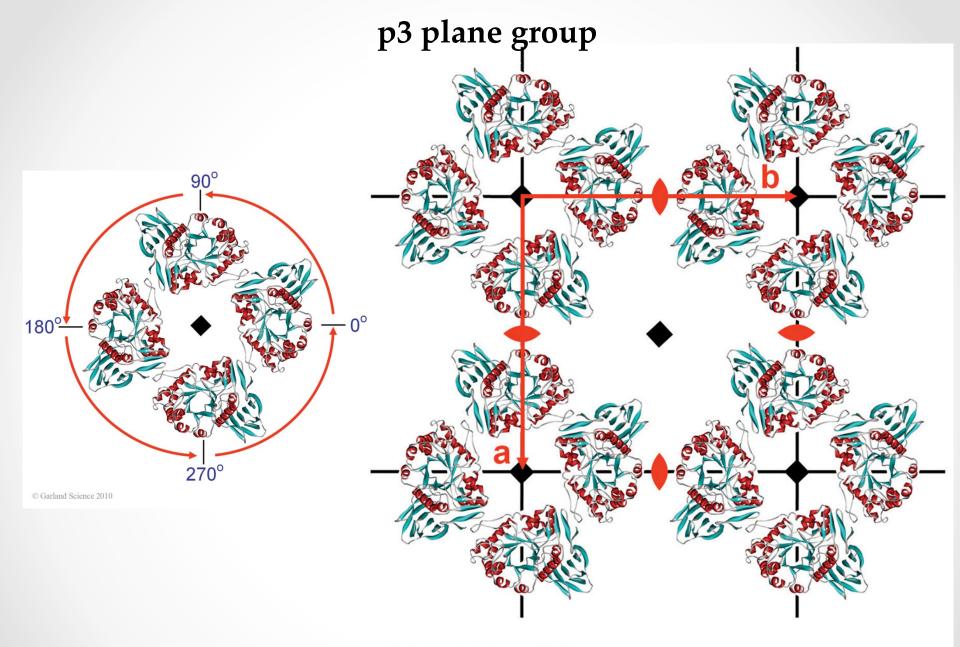
p2 plane group



p3 plane group



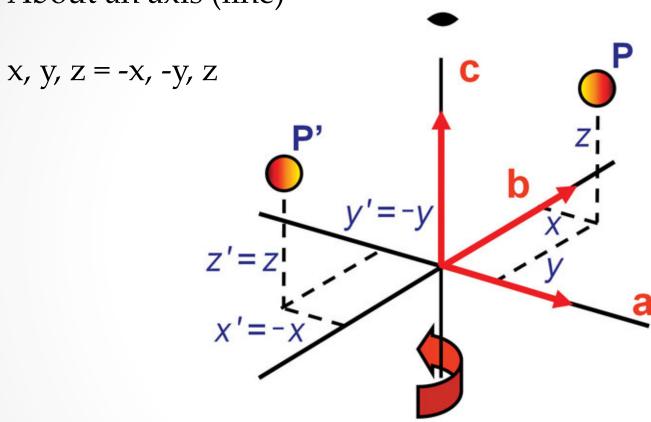
© Garland Science 2010



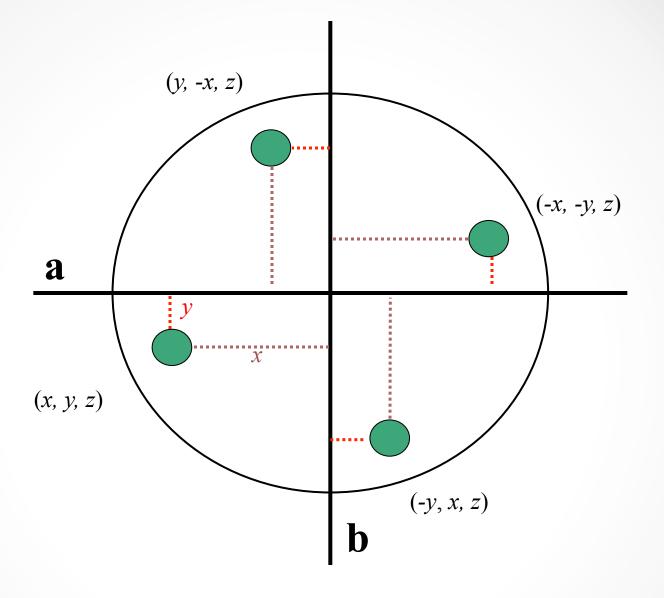
© Garland Science 2010

Rotation in 3D

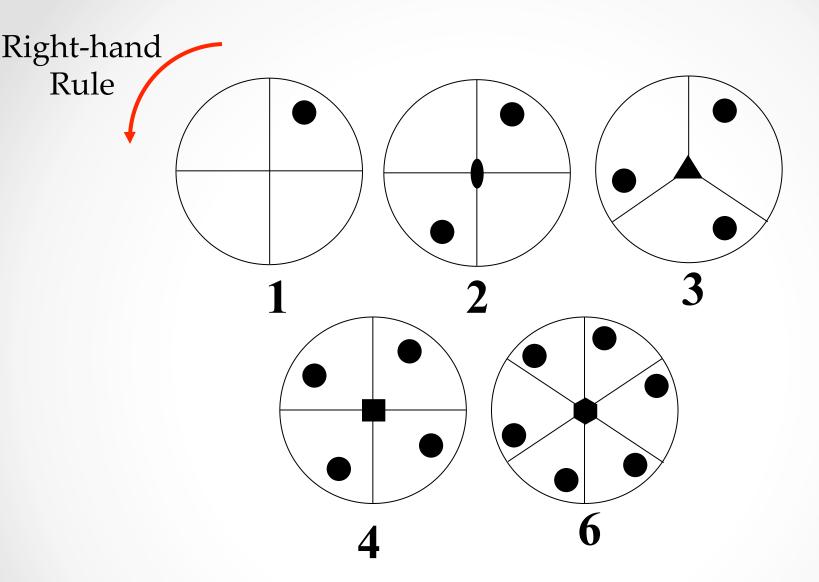
About an axis (line)



© Garland Science 2010



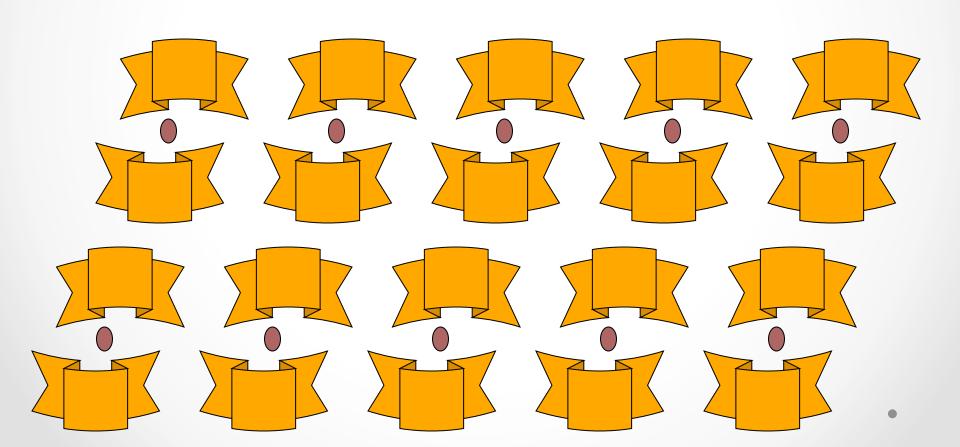
Equivalent positions for a 4-fold proper rotation

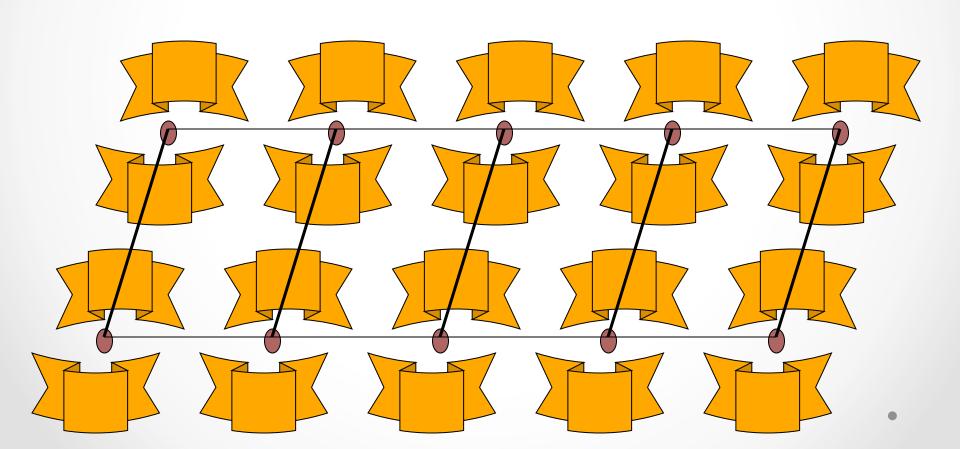


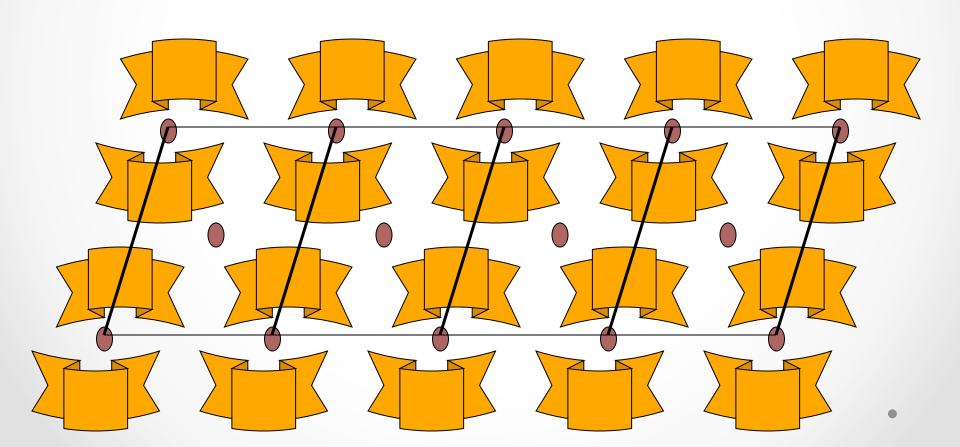
Stereograms of the proper rotation axes

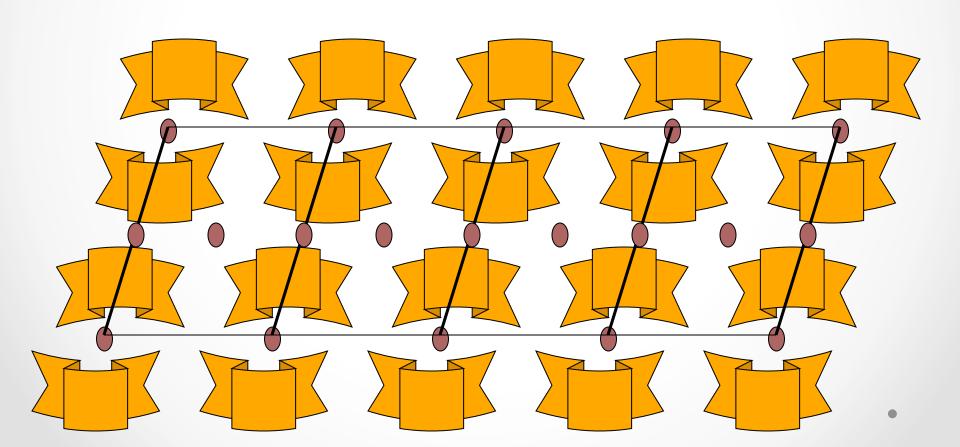
Only rotations allowed: 2, 3, 4, 6 (Crystallographic Restriction theorem)

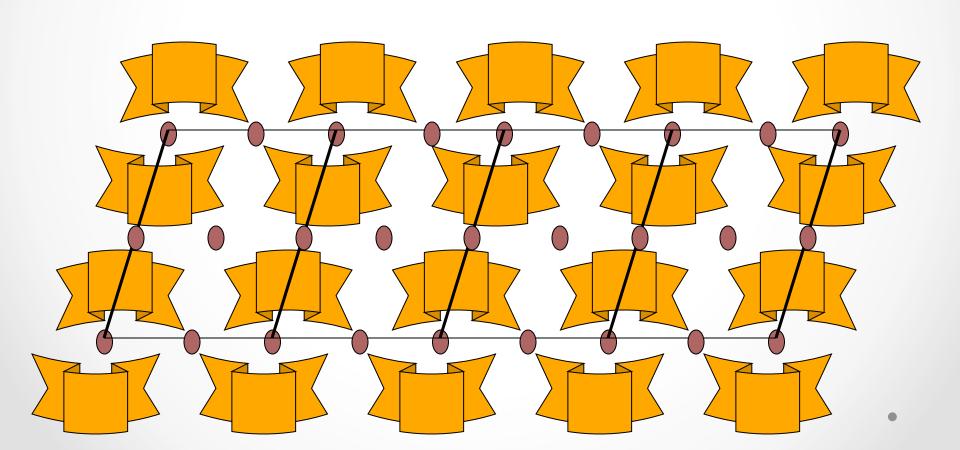


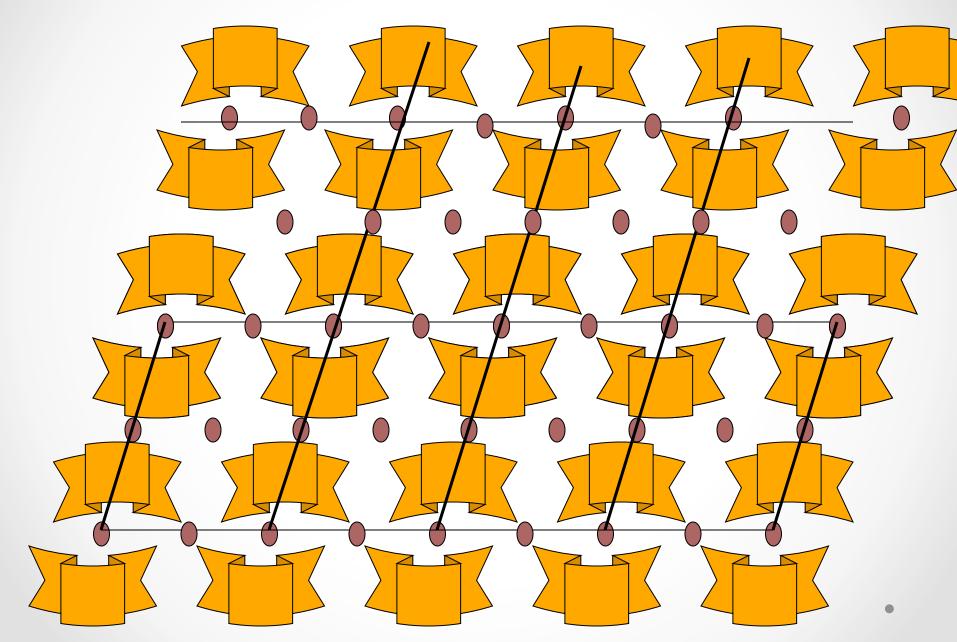




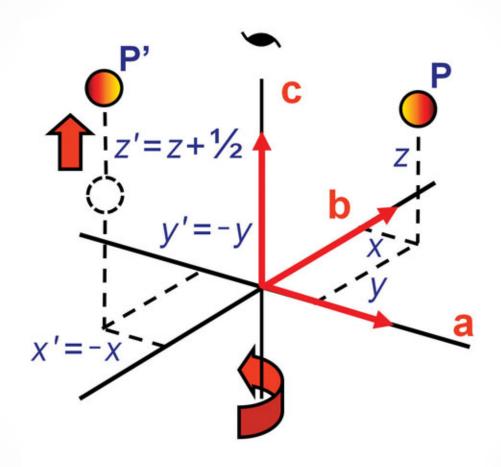






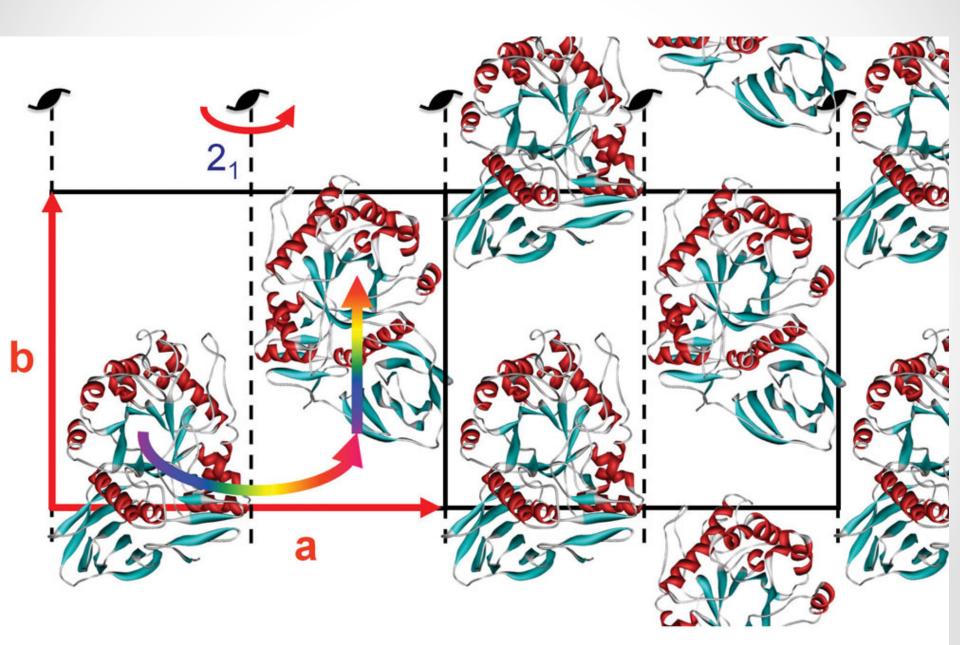


Rotation and translation – screw axis

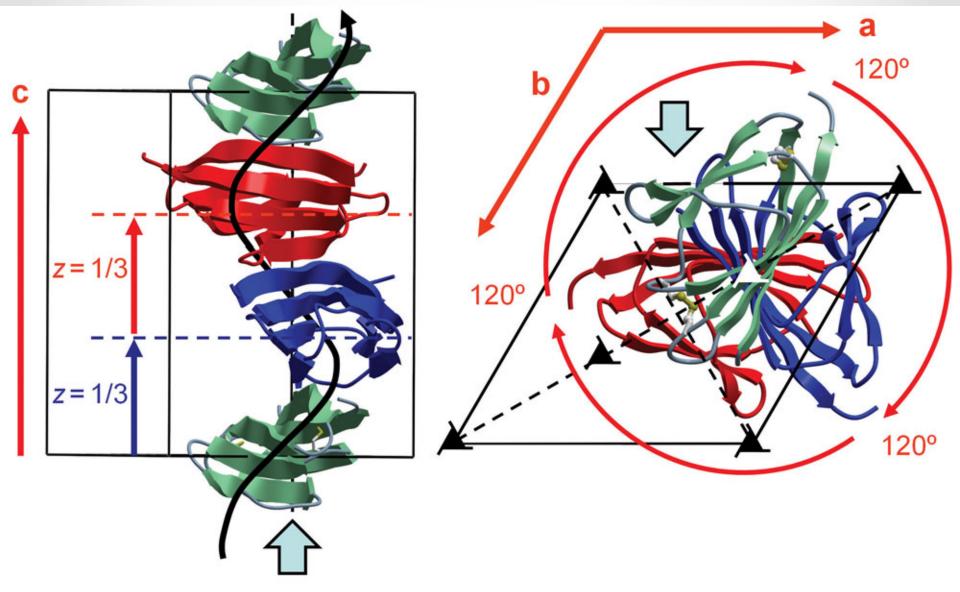


$$x, y, z = -x, -y, z+1/2$$

Rotation and translation – screw axis



Rotation and translation – screw axis



© Garland Science 2010

Mirror (σ)

Reflection along a plane

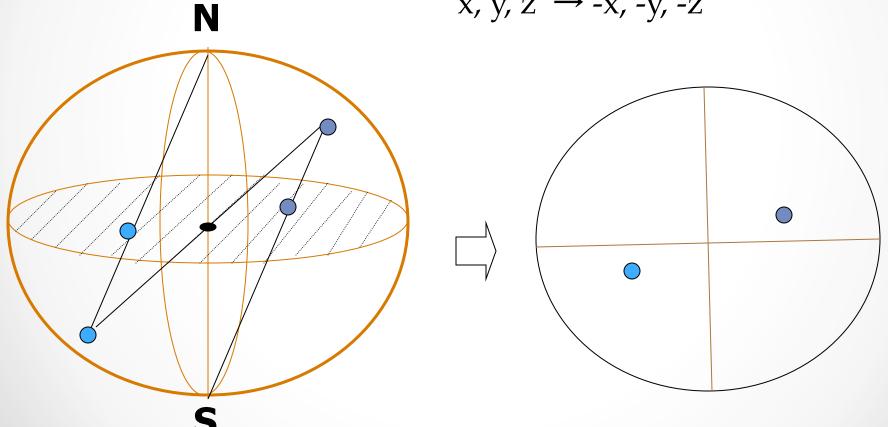
$$x,y,z \rightarrow x, -y, z \quad (\sigma \perp y)$$

 $x,y,z \rightarrow -x, y, z \quad (\sigma \perp x)$
 $x,y,z \rightarrow x, y, -z \quad (\sigma \perp z)$

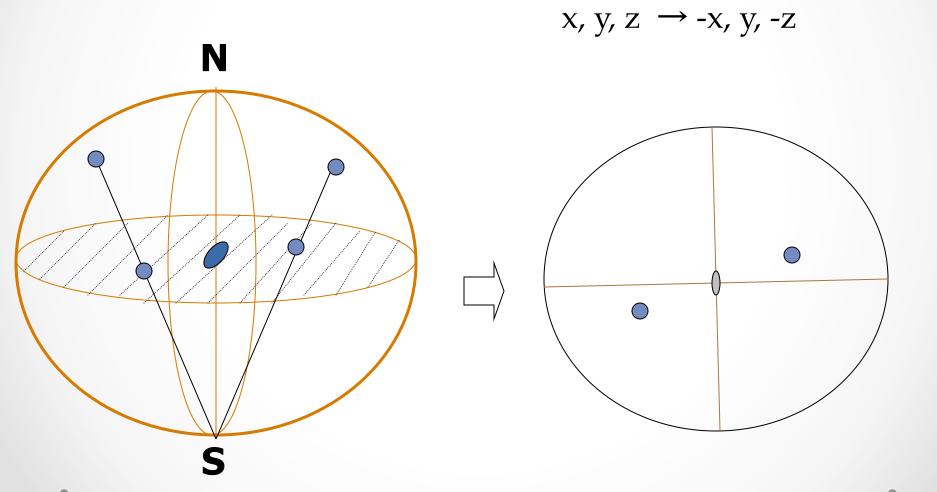
Inversion (i)

Inversion through a point

$$x, y, z \rightarrow -x, -y, -z$$



A 2-fold

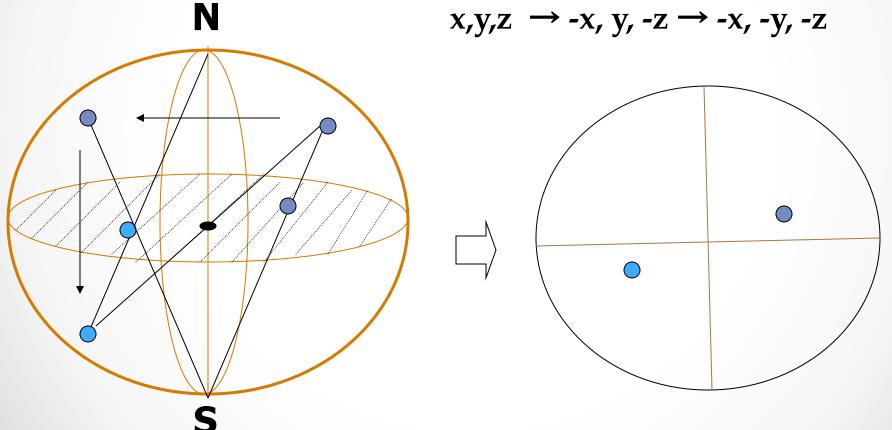


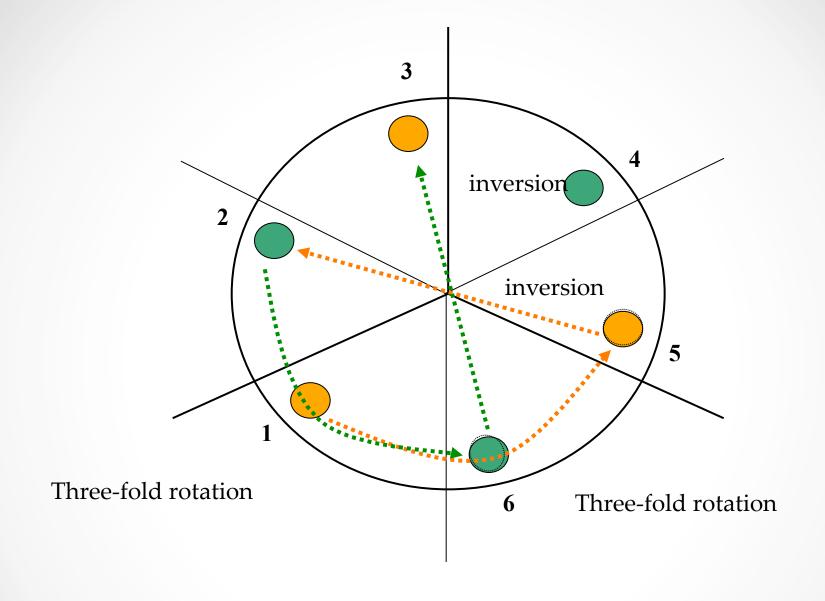
A 2 fold with $\perp \sigma$

 $2/\sigma$ operation is same as inversion

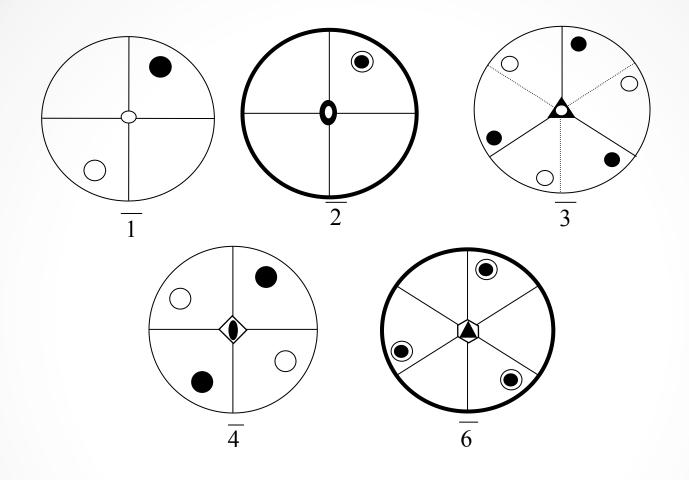
$$2 \mid \mid y \quad \sigma \perp y$$

$$x,y,z \rightarrow -x, y, -z \rightarrow -x, -y, -z$$





3-fold improper axis



Stereograms of the five improper rotation axes

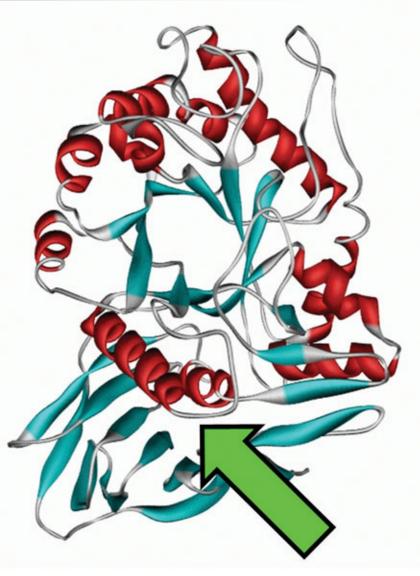
Point Group

Collection of symmetry elements
Symmetry elements (in a molecule) intersect at a point
Do not alter the molecule itself

Summarizes all symmetry operations in a group

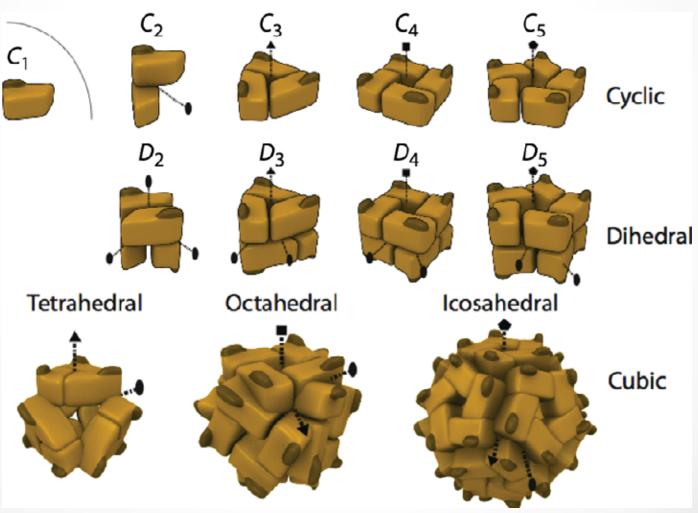
Chirality

In order to be chiral, a molecule must lack both i and σ



Point groups of biological macromolecules

Klein, 1884: The only finite 3D symmetry groups are cyclic, dihedral, tetrahedral, octahedral, icosahedral



Cyclic pointgroups

Schonflies notation: C_n

Simplest case: C₁

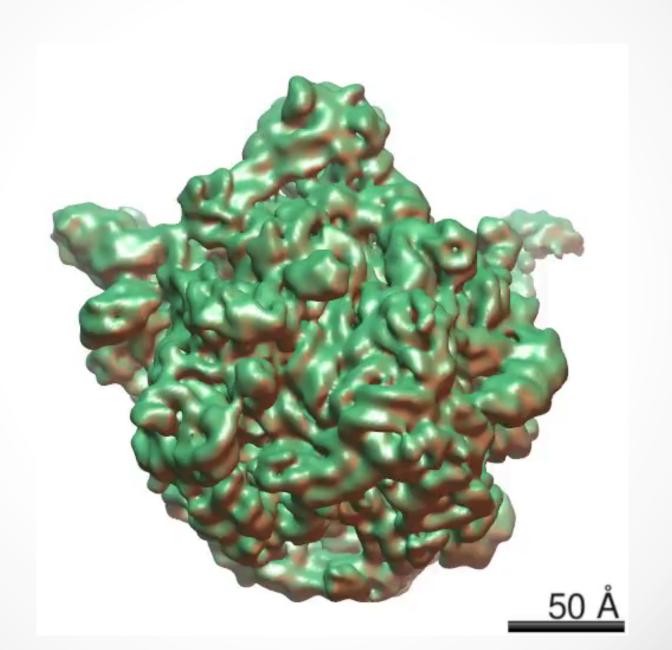
Asymmetric oligomer

Every projection is unique (does not reappear at a different combination of Euler angles)

Mirror symmetry between projection at one Euler angle and its opposite Euler angle

Asymmteric triangle = whole unit sphere

EMBD - 2605: 50S ribosome bound to ObgE



\mathbb{C}_2

One two-fold rotational axis of symmetry

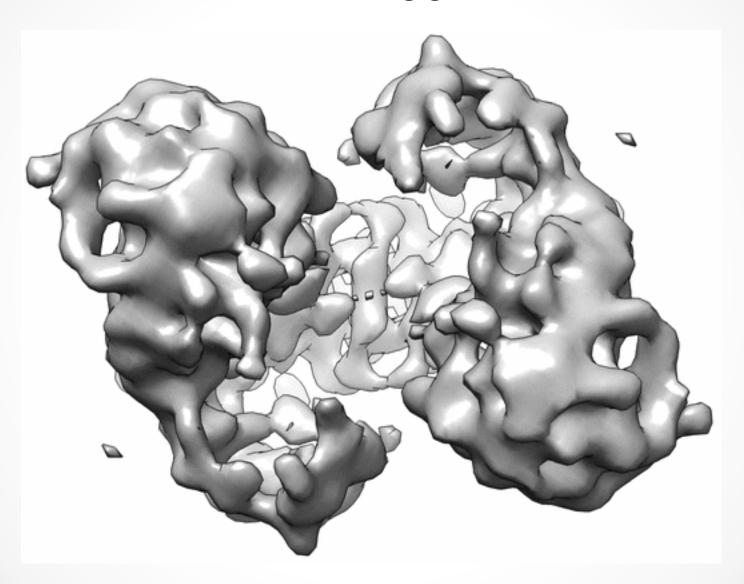
Every normal projection appears twice

Projections perpendicular to 2-fold axis will demonstrate mirror symmetry

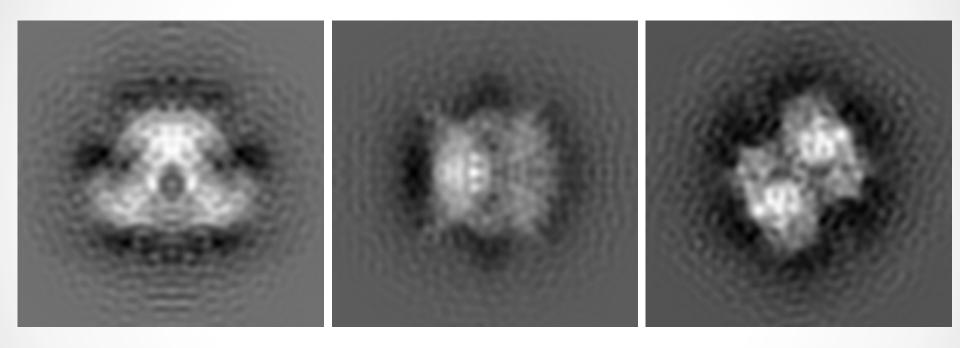
One unique projection along two-fold axis: rotates the dimer back on itself

Asymmteric triangle = half of the unit sphere

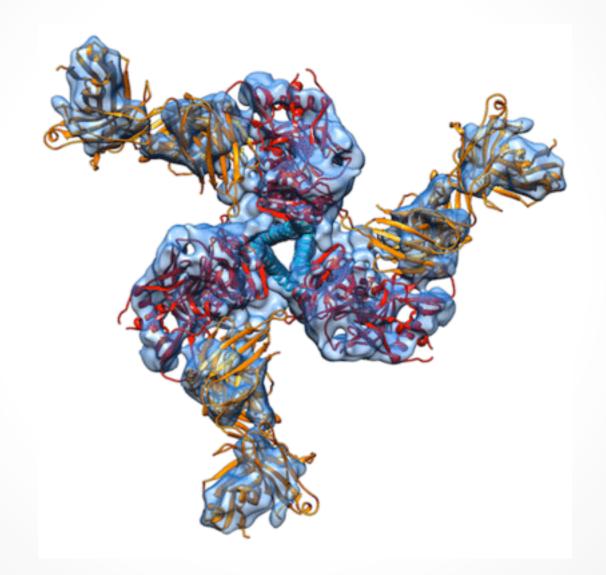
C2
Recombination activating gene (RAG): EMD6490



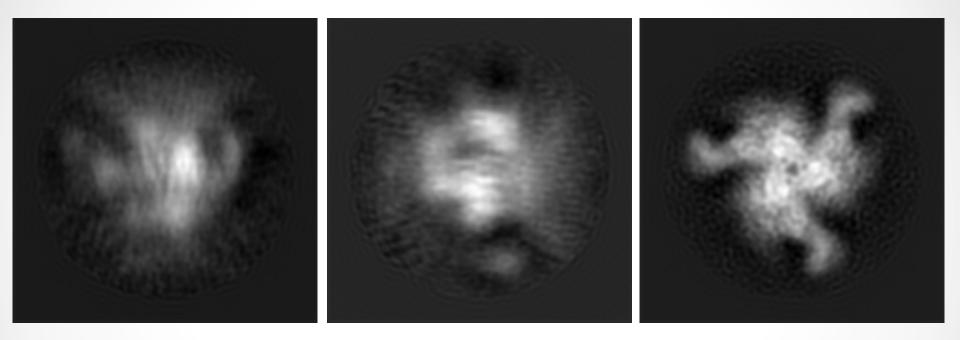
C2
Recombination activating gene (RAG): EMD6490



C3 HIV-1 envelope glycoprotein: EMD2484



C3 HIV-1 envelope glycoprotein: EMD2484



C_n: All other cyclic point groups

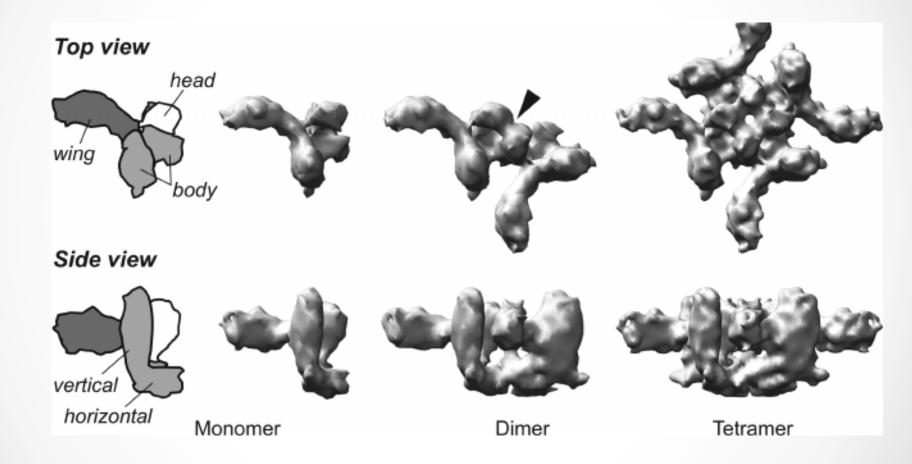
To form a C_n structure requires n identical units

"n" subunits organized in circular arrangement in head to tail fashion

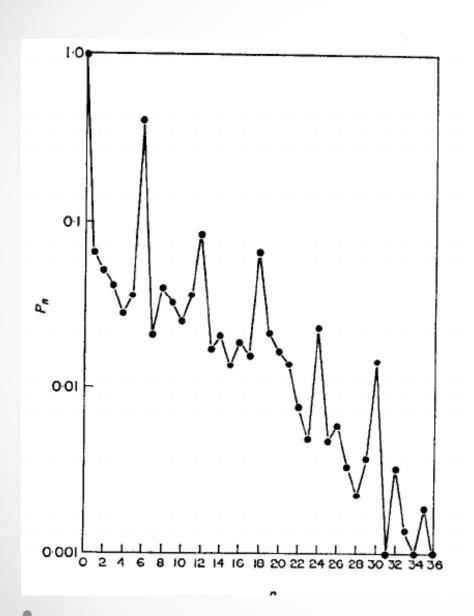
Rotational axis perpendicular to the plane of arrangement of molecules

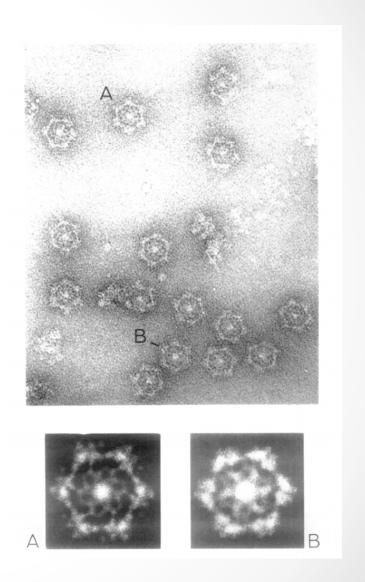
Even symmetry: projections have mirror symmetry Odd symmetry: projections do not have mirror symmetry

C₄: Latrotoxin

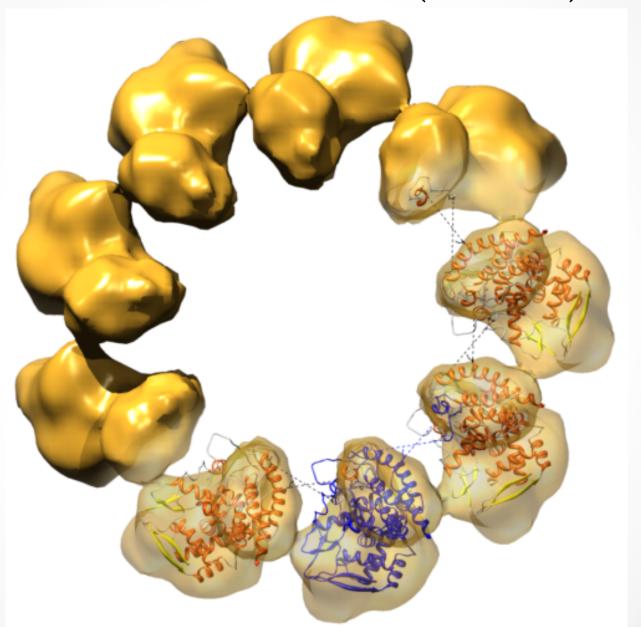


C6: Bacteriophage T4 base plates



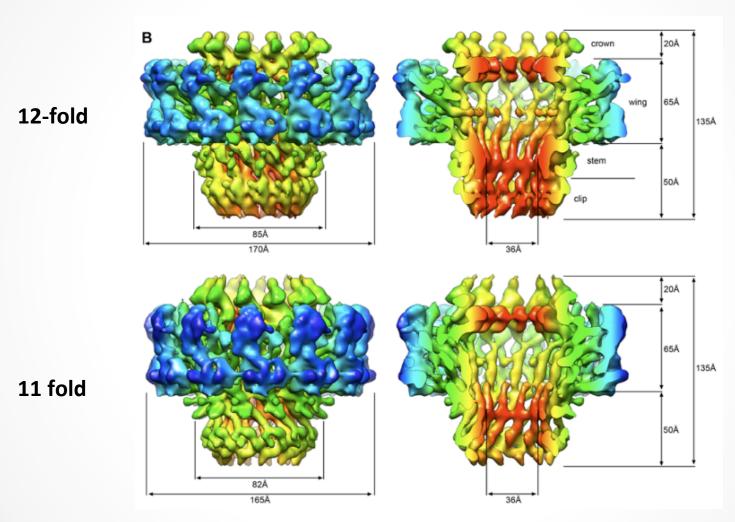


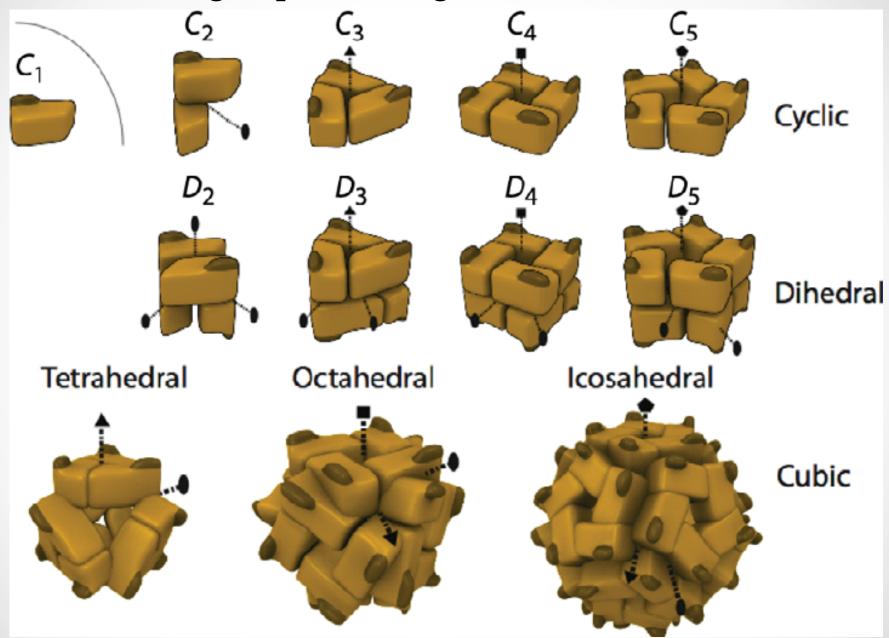
C9: Influenza Virus RNP (EMD1603)



C11, 12: Bacteriophage P22 portal and tail machine

Bacteriophage P22 portal and tail machine





Janin et al, Quarterly Reviews of Biophysics, 2008

D_n: dihedral structures

n-fold rotational axis and a 2-fold axis perpendicular to it

Two C_n structures stacked top-to-top or bottom-to-bottom

$$D_1 = C_2$$

D_2 (222)

Three 2-fold axes, all perpendicular to each other

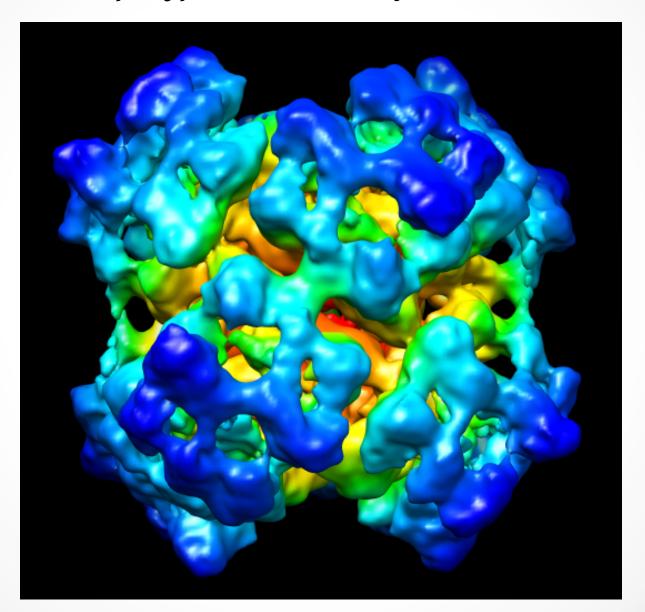
Minimum number of subunits required = four

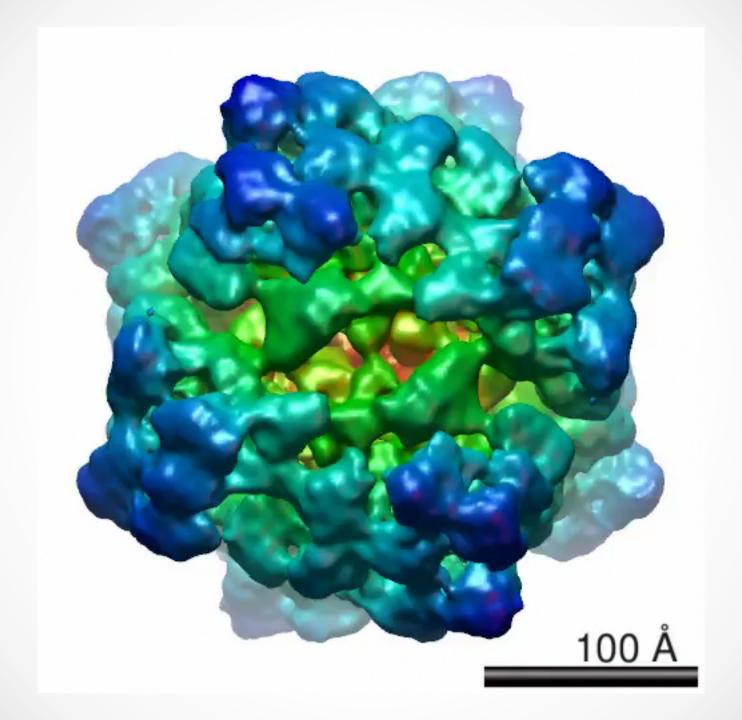
One projection equivalent to 4 different projections

Projections along two-folds have a double mirror symmetry

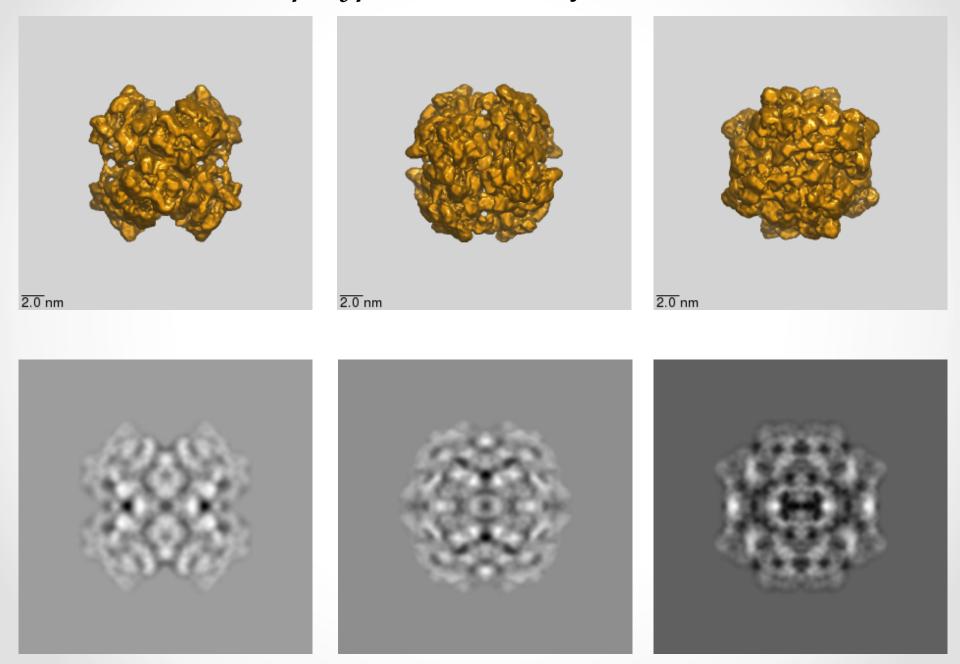
Asymmetric triangle covers 1/4th unit sphere

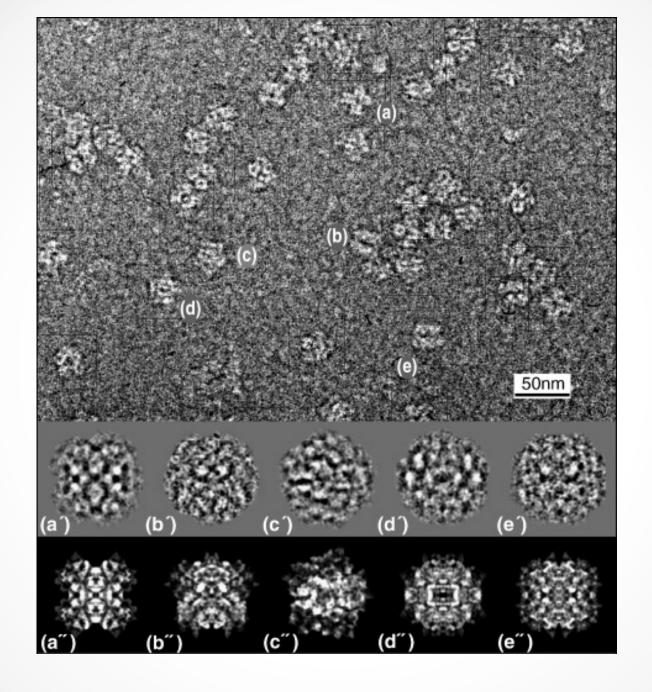
D₂
Limulus polyphemus hemocyanin EMD1304





Limulus polyphemus hemocyanin EMD1304





D_3 (32)

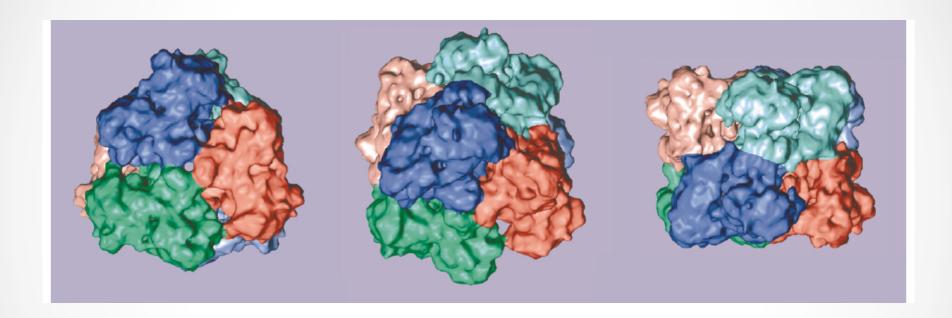
Minimum of 6 equivalent monomers required

One three-fold rotational axis, and three 2-fold axis perpendicular to that

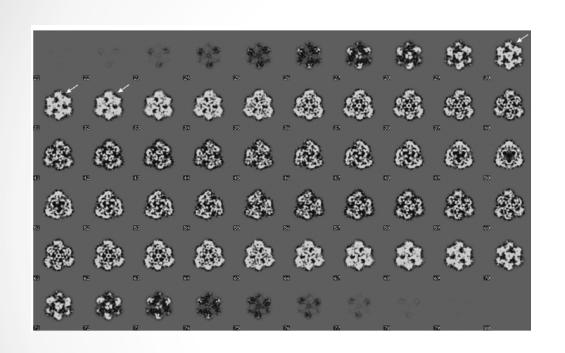
Projections along 3-fold axis exhibit three mirror planes

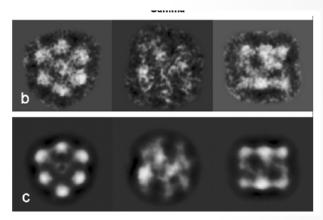
Asymmetric triangle covers 1/6th of unit sphere

 $\begin{array}{c} D_3 \\ Palinurus \ elephas \ hemocyanin \end{array}$



D₃ Palinurus elephas hemocyanin





D₄ (422)

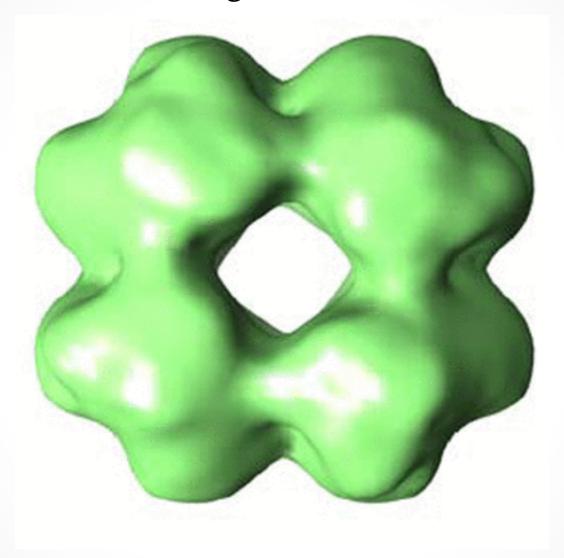
Requires 8 equivalent monomers

Two 2-fold axis, one 4-fold axis

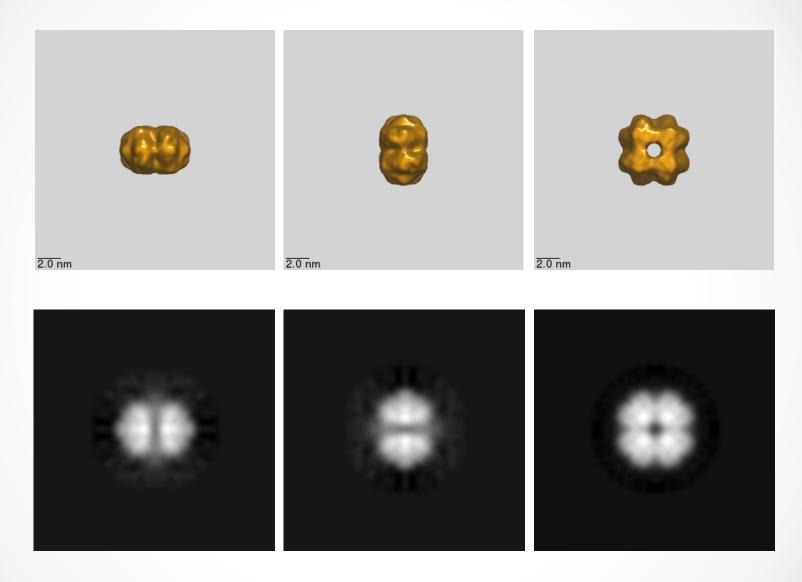
Projections along the axis show perpendicular mirror planes

Asymmetric triangle covers 1/8th of the unit sphere

Rubisco large subunit octamer



Rubisco large subunit octamer



D_5 (52)

Requires 10 equivalent subunits

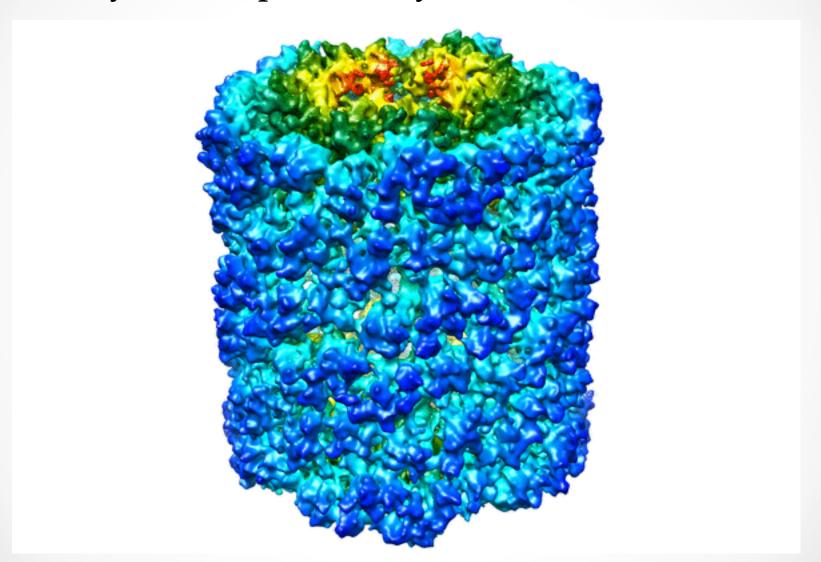
Each projection corresponds to 10 different combinations of Euler angles

Projections along 5-fold contain 5 mirror planes

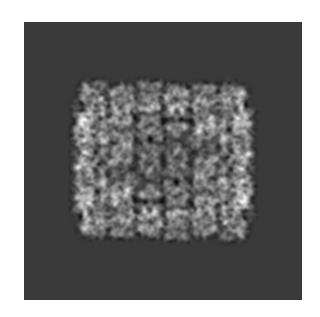
Projections along two-fold have no mirror symmetry

Asymmetric triangle covers 1/10th spehere

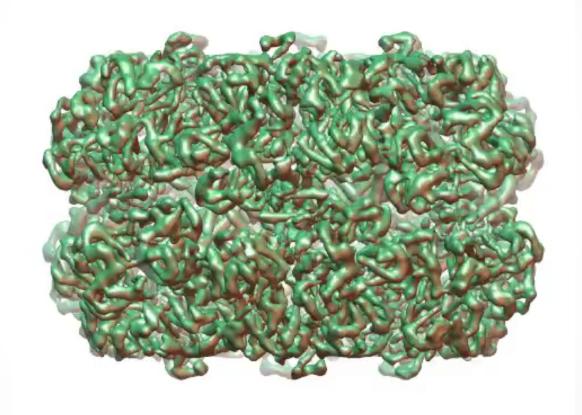
 D_5 (52) Keyhole Limpet Hemocyanin (KLH) EMD1569



 D_5 (52) Keyhole Limpet Hemocyanin (KLH) EMD1569

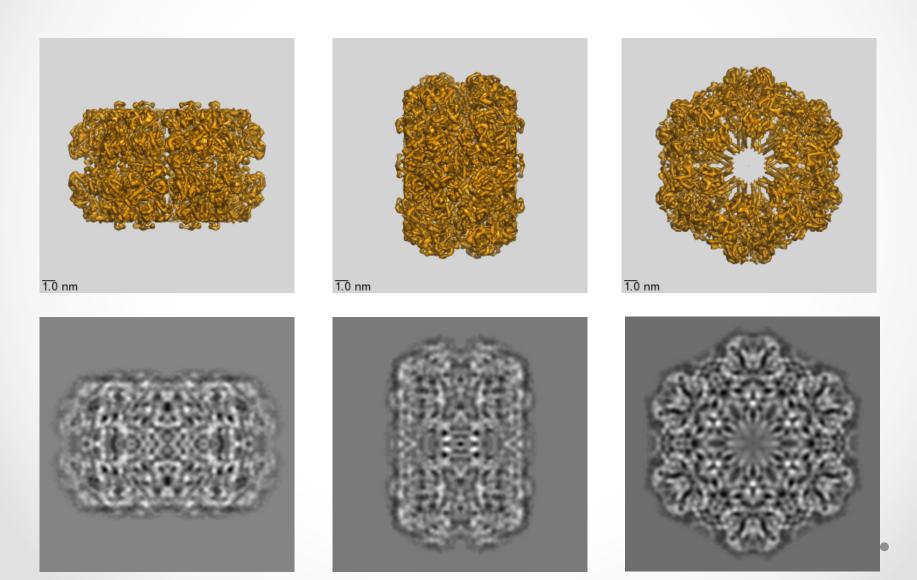


D₆ (622) Total of 12 equivalent subunits Worm haemoglobin, EMD2825

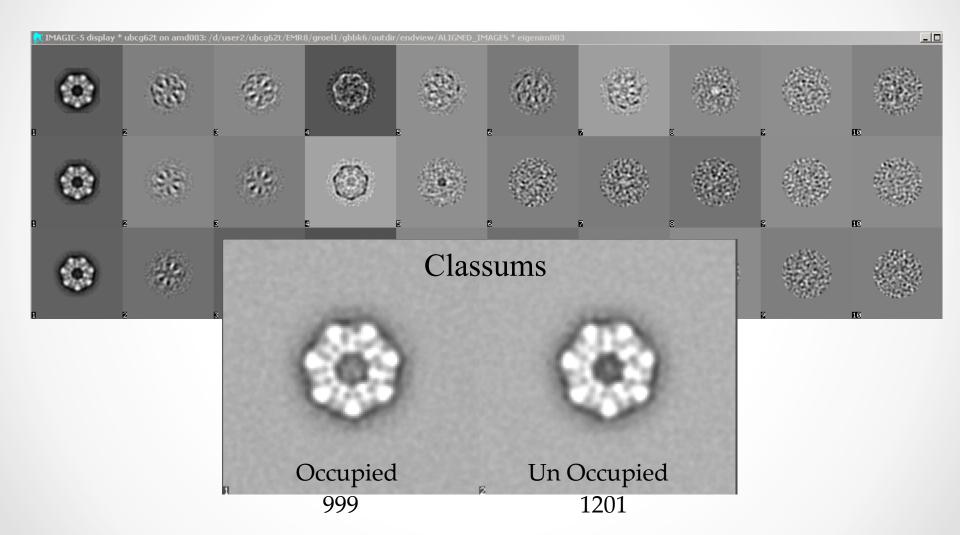


100 Å

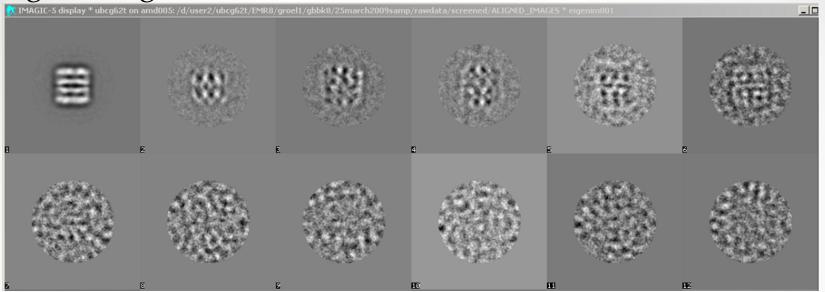
D₆ (622) Total of 12 equivalent subunits Worm haemoglobin, EMD2825



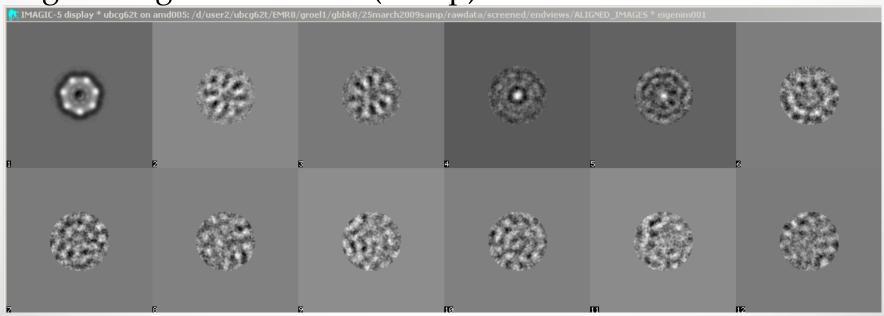
D_{7:} GroEL

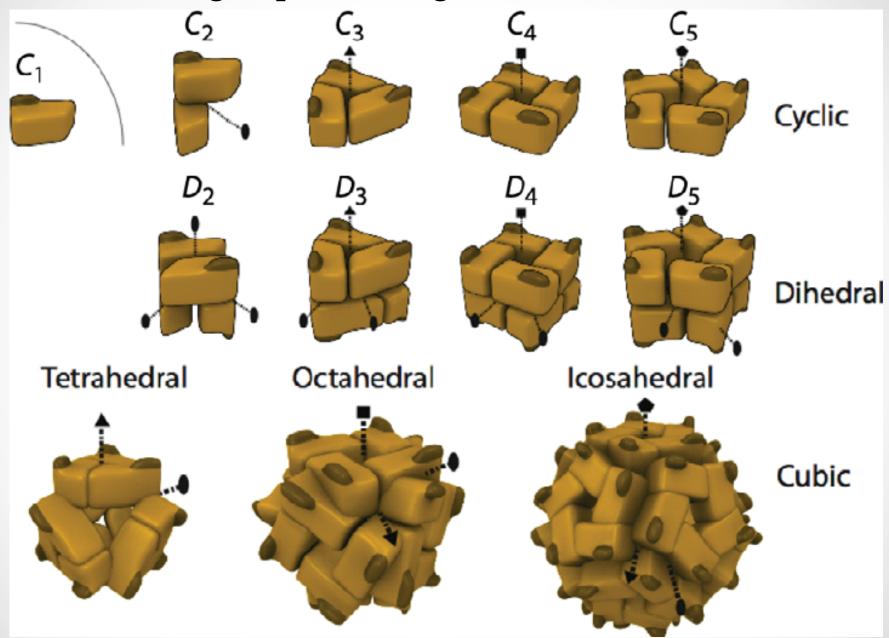


Eigen images of 4782 side views.



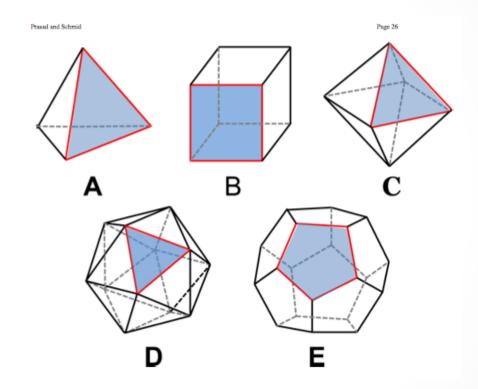
Eigen images of 3161 end(or top) views.





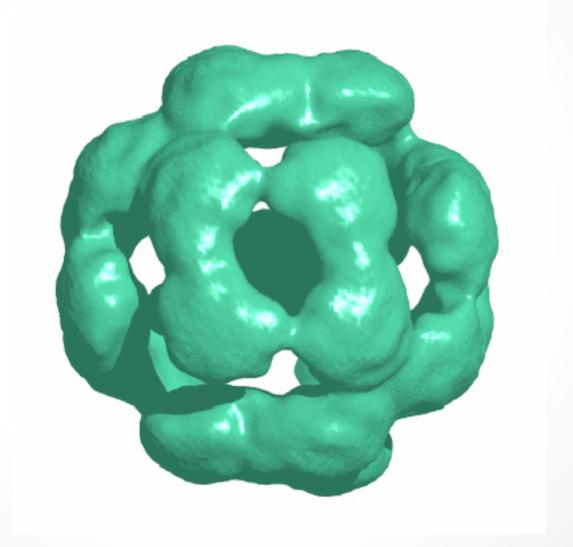
Janin et al, Quarterly Reviews of Biophysics, 2008

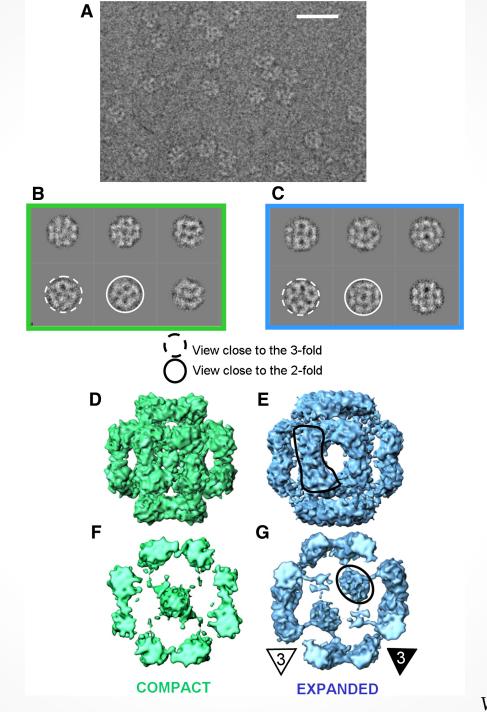
Platonic solids (all have cubic symmetry) tetrahedron, cube, octahedron, dodecahedron and Icosahedron

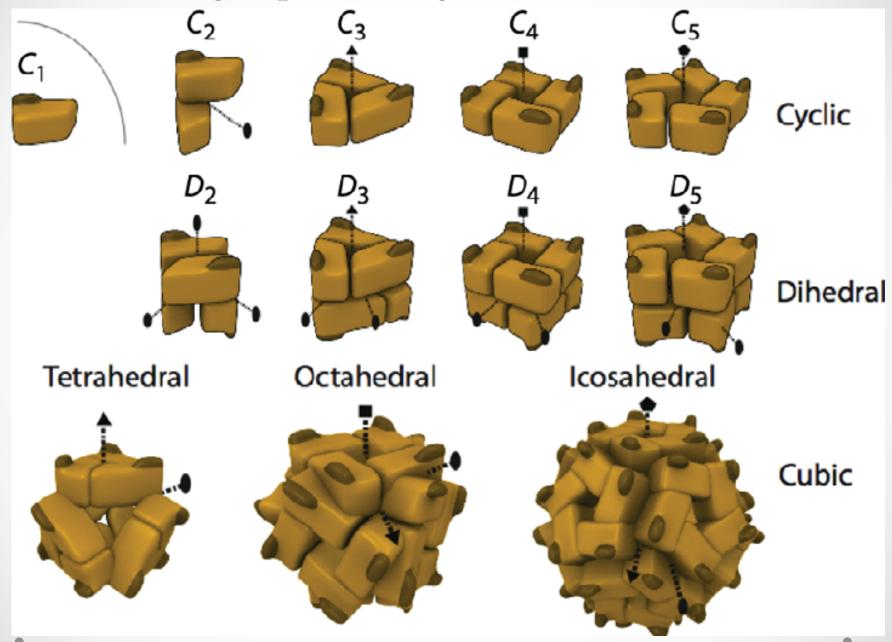


The number of vertices (V), faces (F), and edges (E) follow Euler formula, F +V=E+2

Tetrahedron (T or 23)
Four 3-fold axes and six 2-fold axes
Heat shock protein HSP26: EMD1226

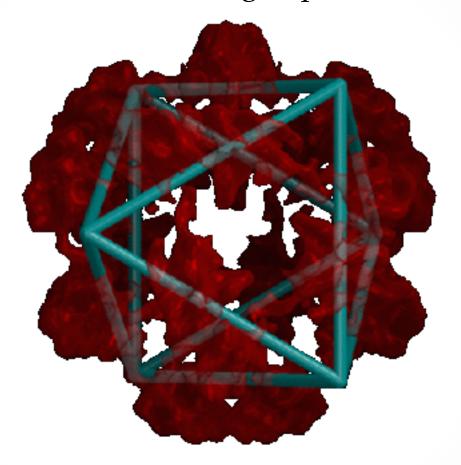




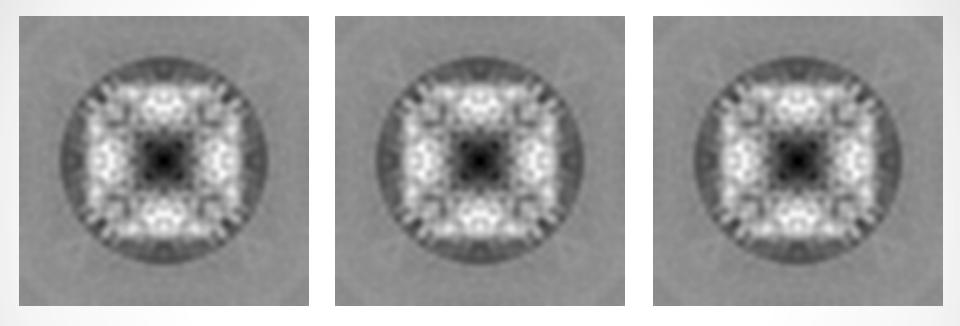


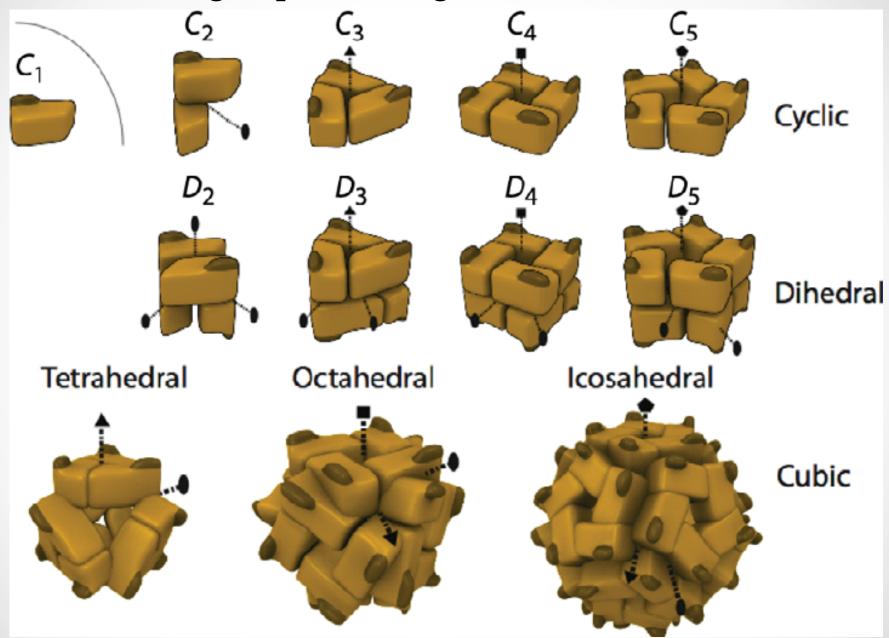
Janin et al, Quarterly Reviews of Biophysics, 2008

O (432) Six 4-folds, eight 3-folds, 12 2-folds HBV small surface antigen particles: EMD1159



O (432)
Six 4-folds, eight 3-folds, 12 2-folds
HBV small surface antigen particles: EMD1159





Janin et al, Quarterly Reviews of Biophysics, 2008

I (532) point group

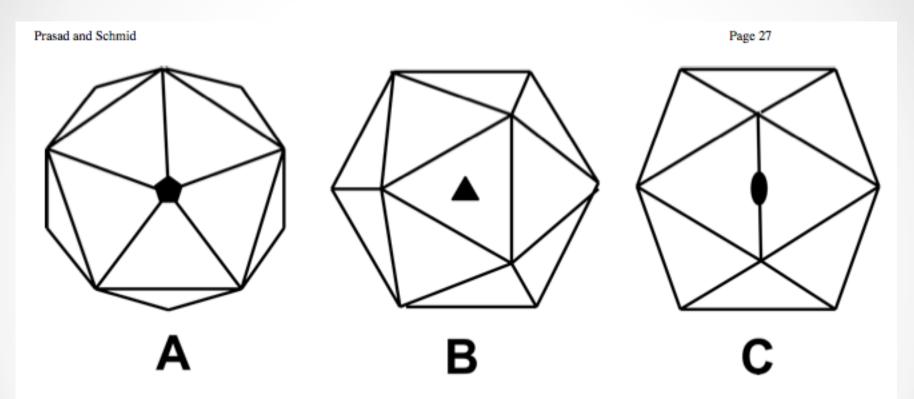
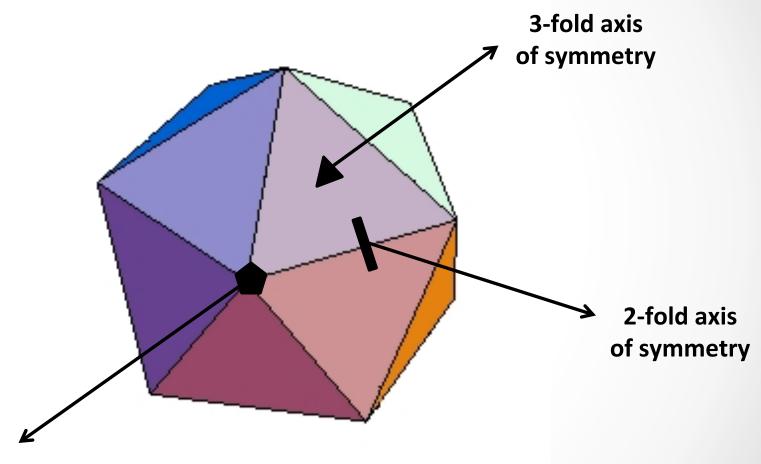


Figure 2.

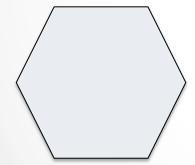
Icosahedral axes of symmetry. An icosahedron displayed along the (A) 5-, (B) 3-, and (C) 2fold symmetry axes. The 5-fold rotation axis passes through the vertices of the icosahedron;
the 3-fold axis passes through the middle of each triangular face; and the 2-fold axis through
the center of each edge.

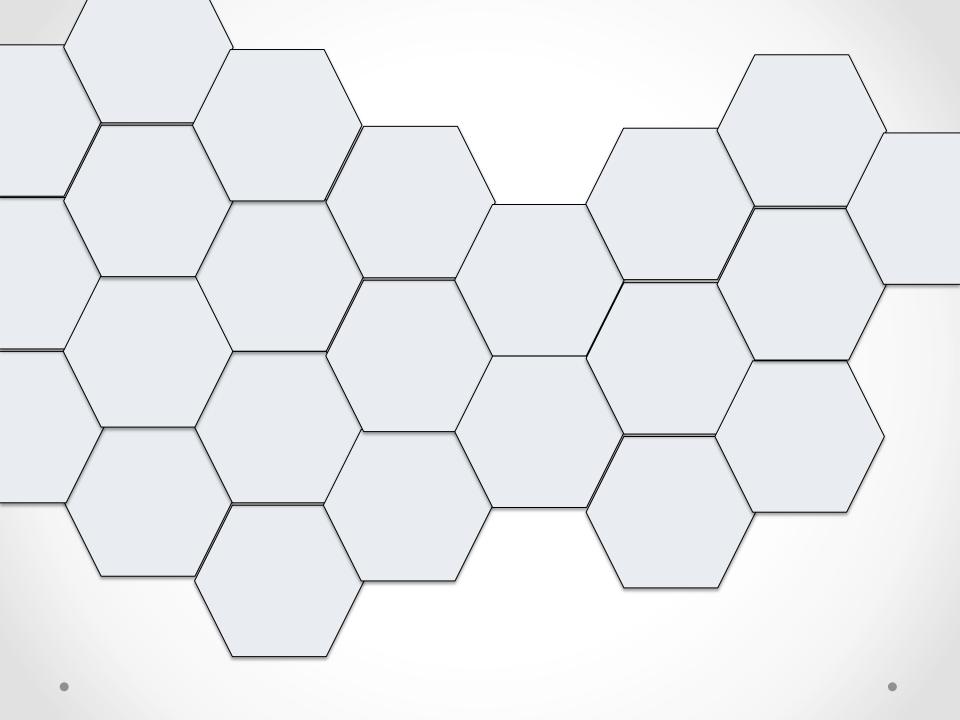
Symmetry of an icosahedron

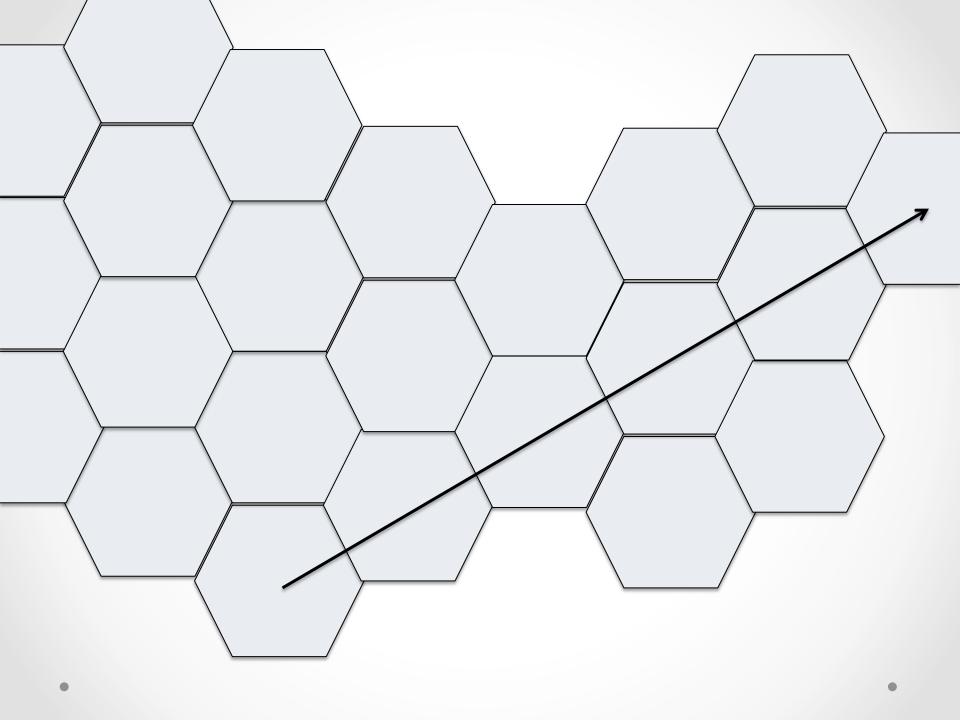


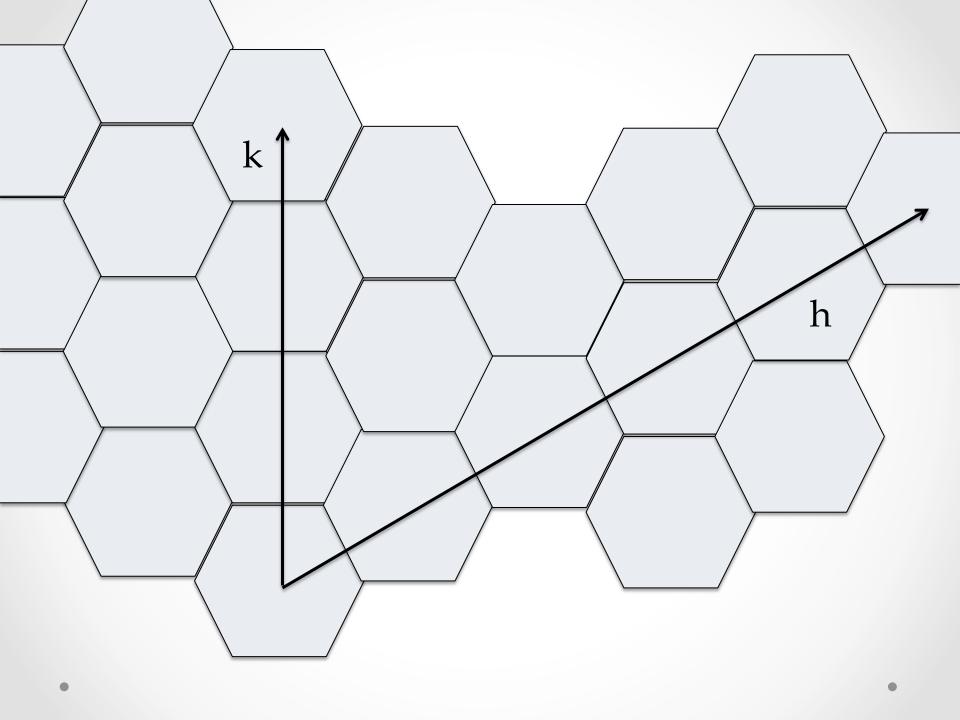
5-fold axis of symmetry

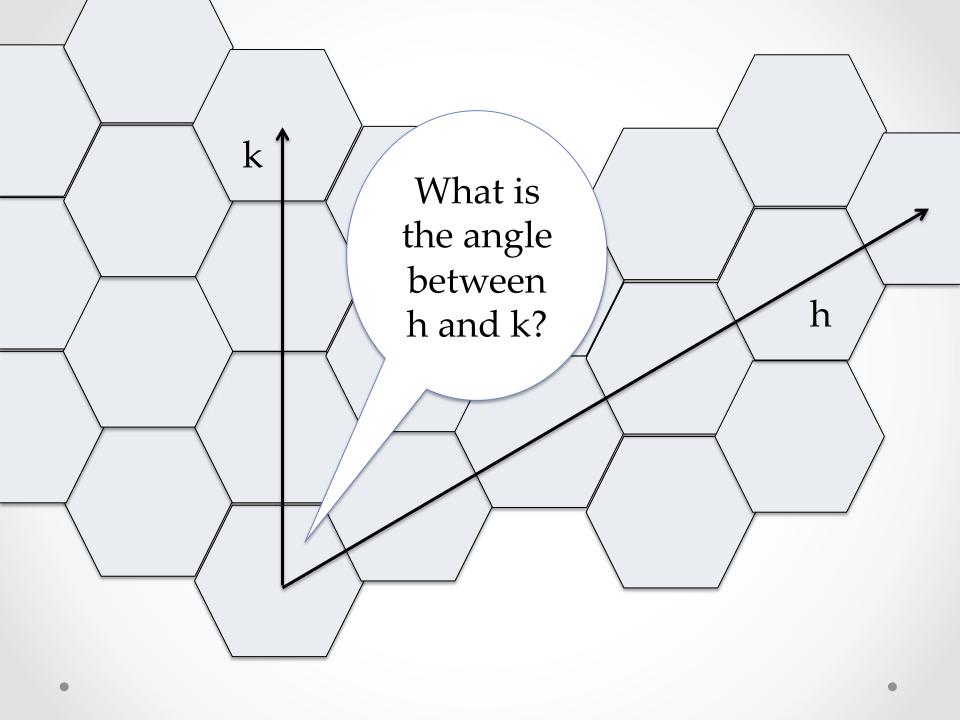
12 5-folds, 20 3-folds and 30 2-folds

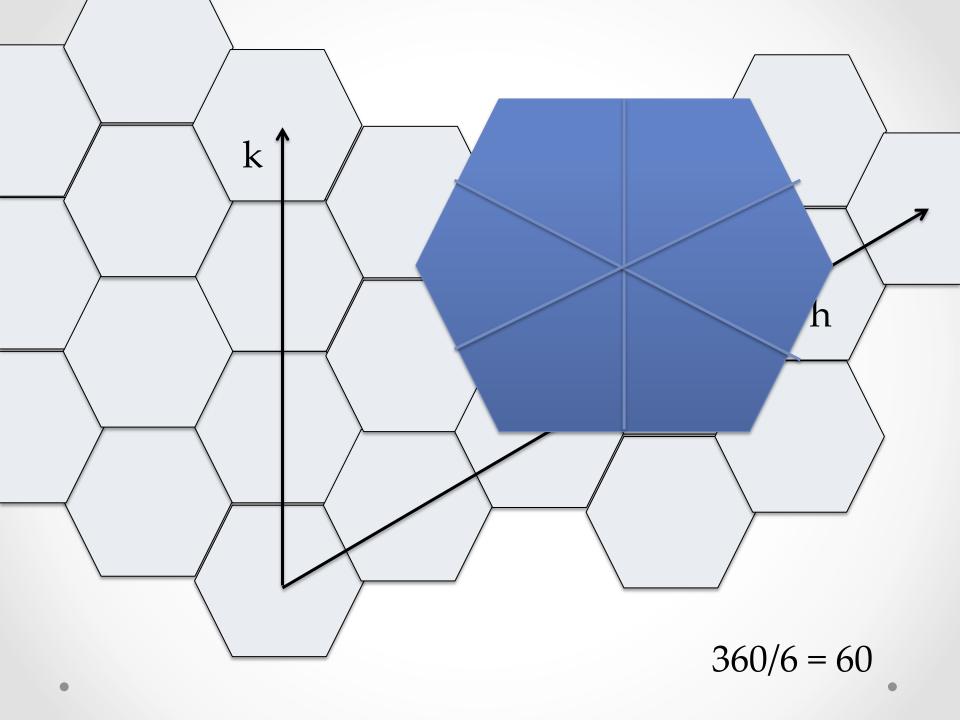


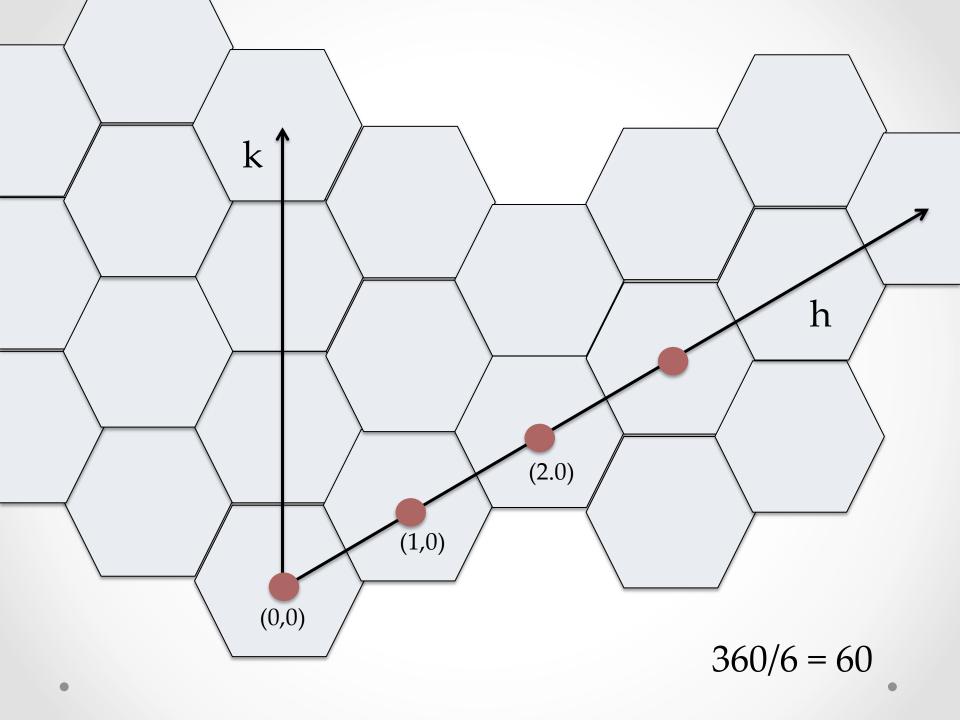


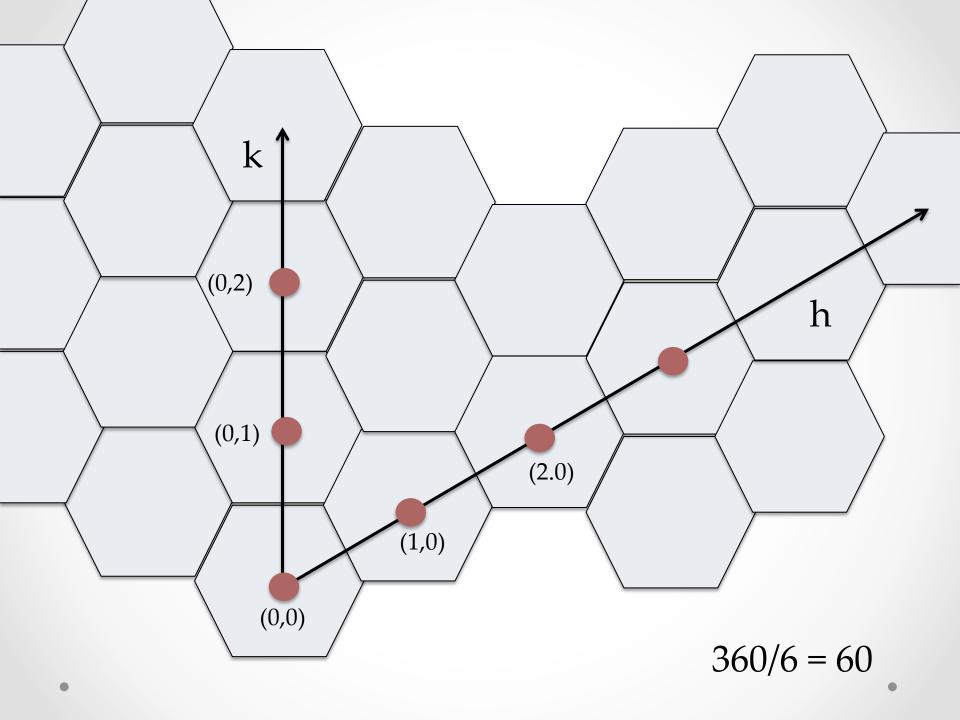


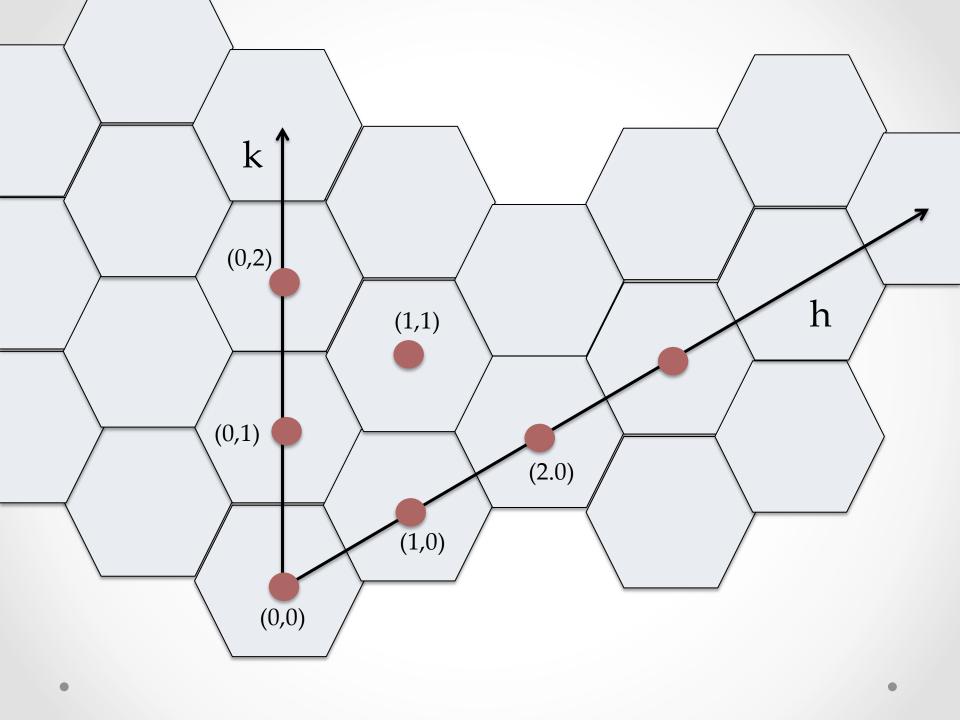


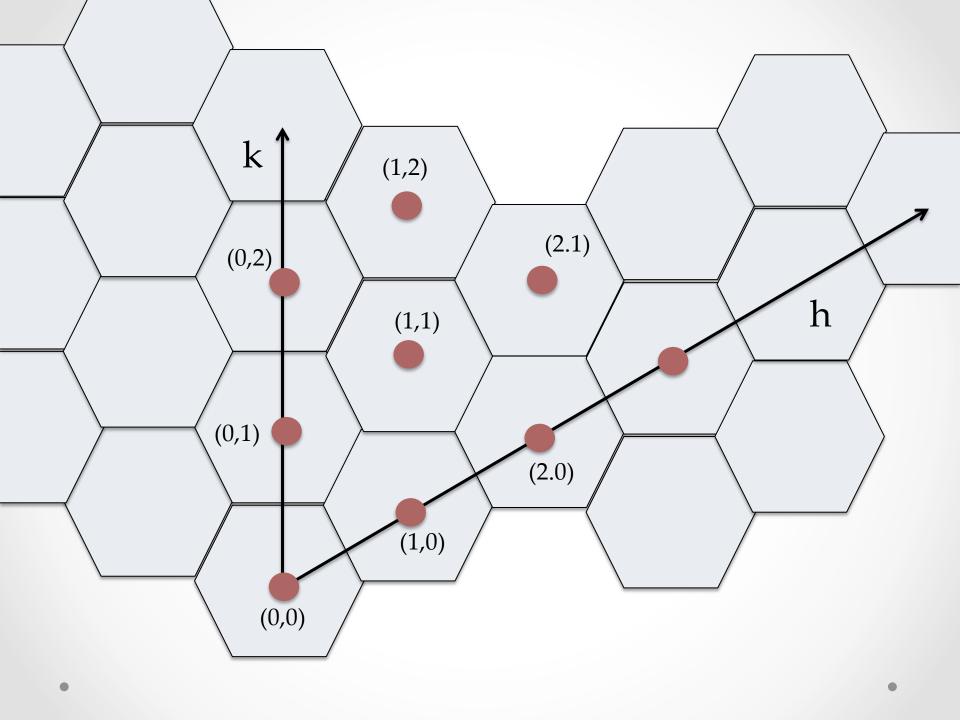


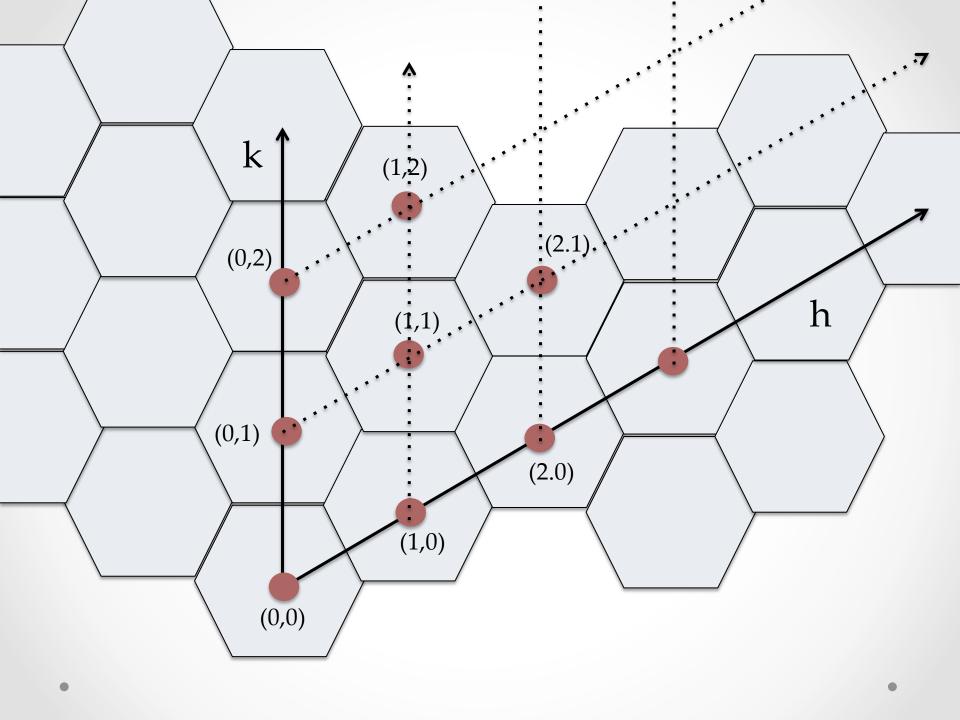


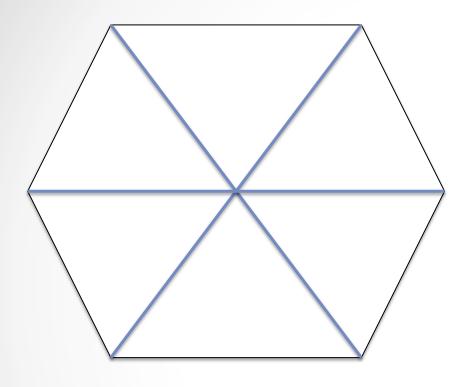






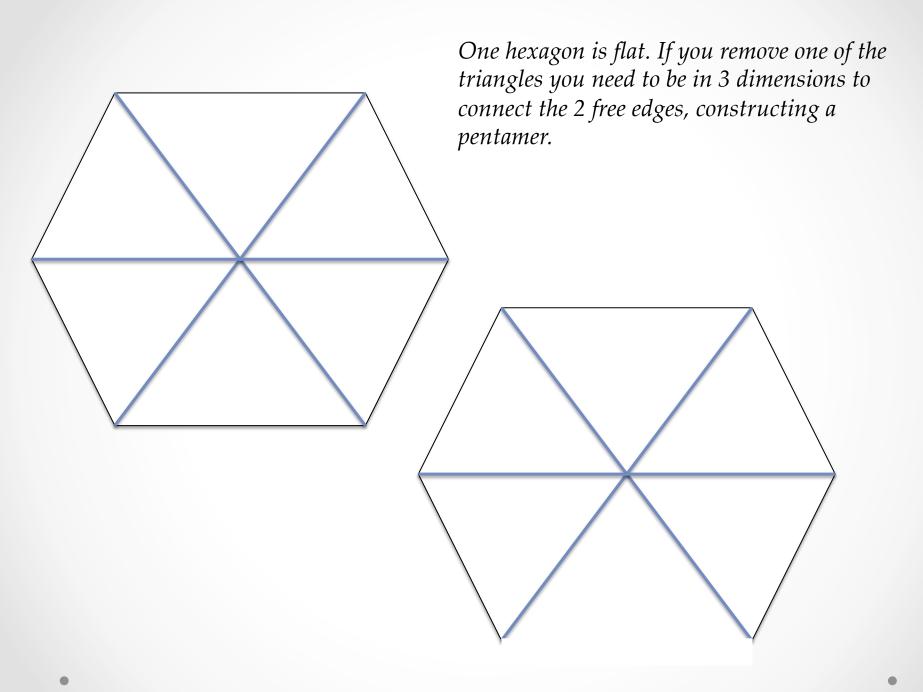


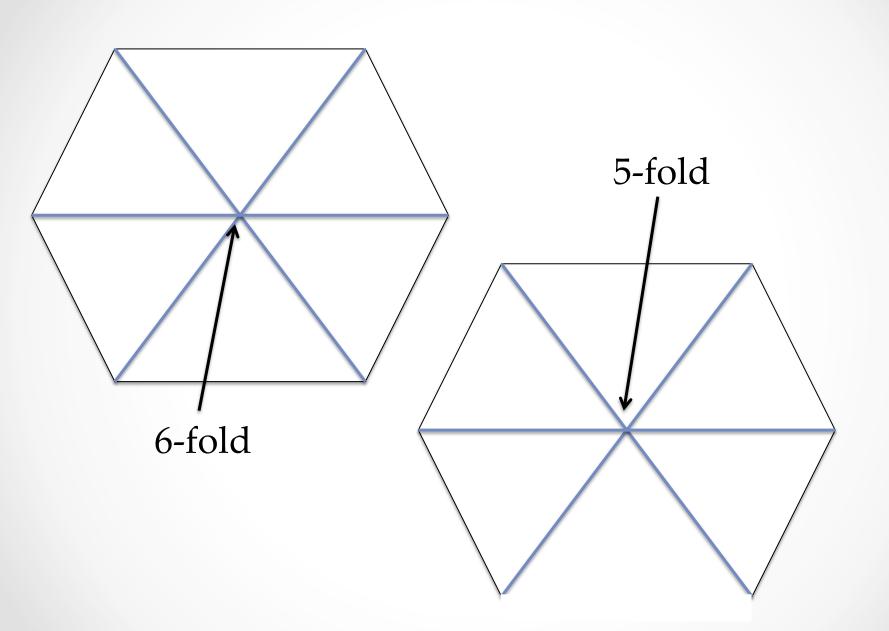


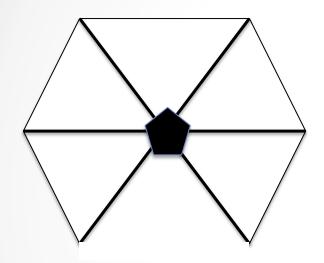


Each hexagon can be decomposed into 6 equilateral triangles

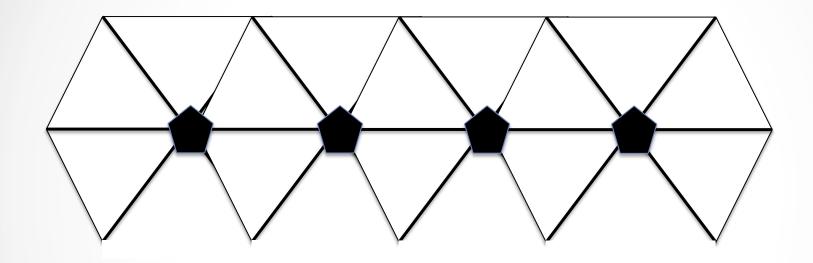
http://www.virology.wisc.edu/virusworld/tri_number.php

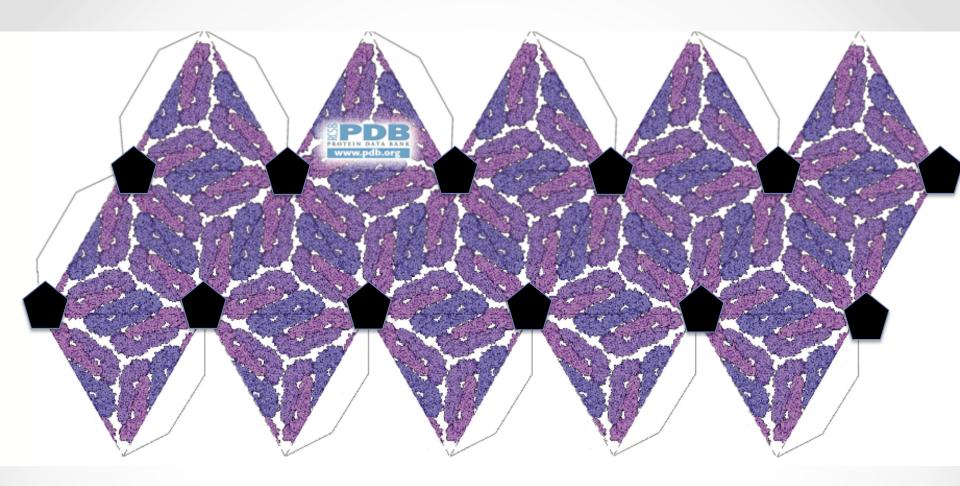




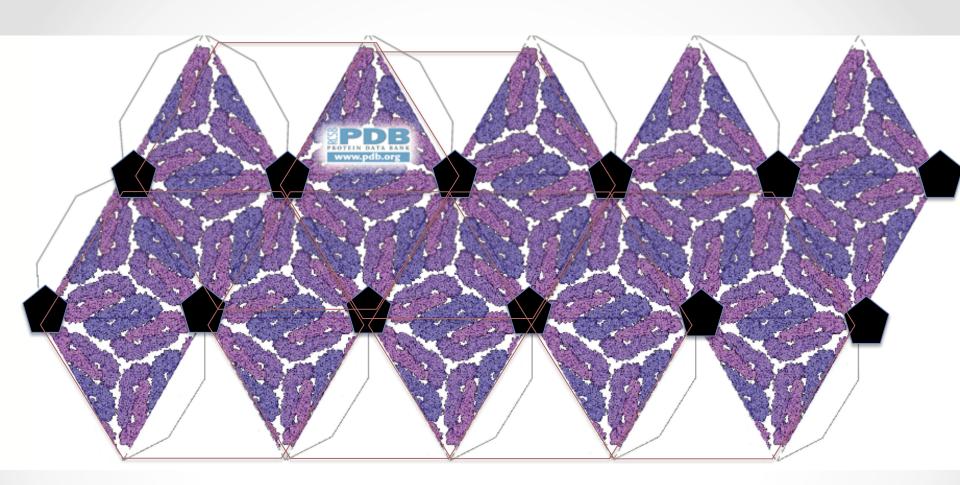








Each of the 12 vertices is at the center of a pentagone. 60 identical units



Construction of complex viruses

What if we want to build a bigger virus?

How to regularly arrange > 60 subunits??

Construction of complex viruses

What if we want to build a bigger virus?

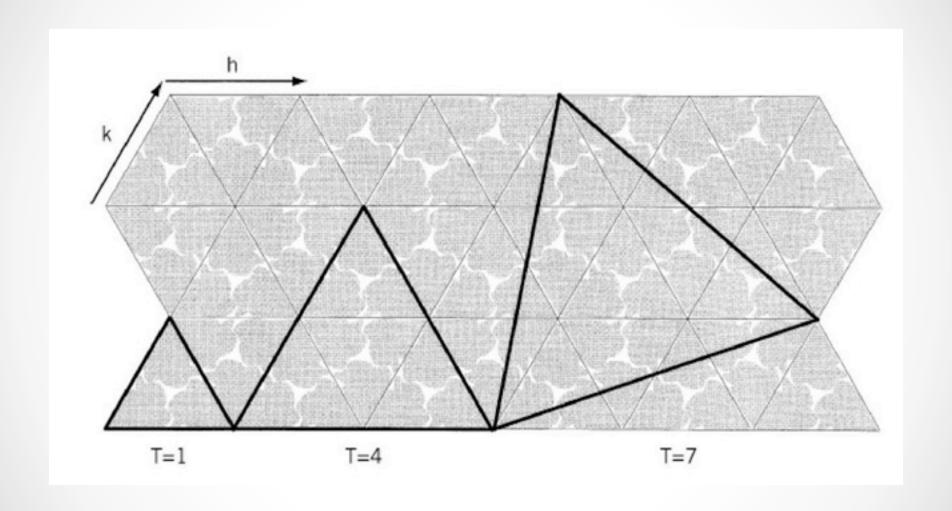
How to regularly arrange > 60 subunits??

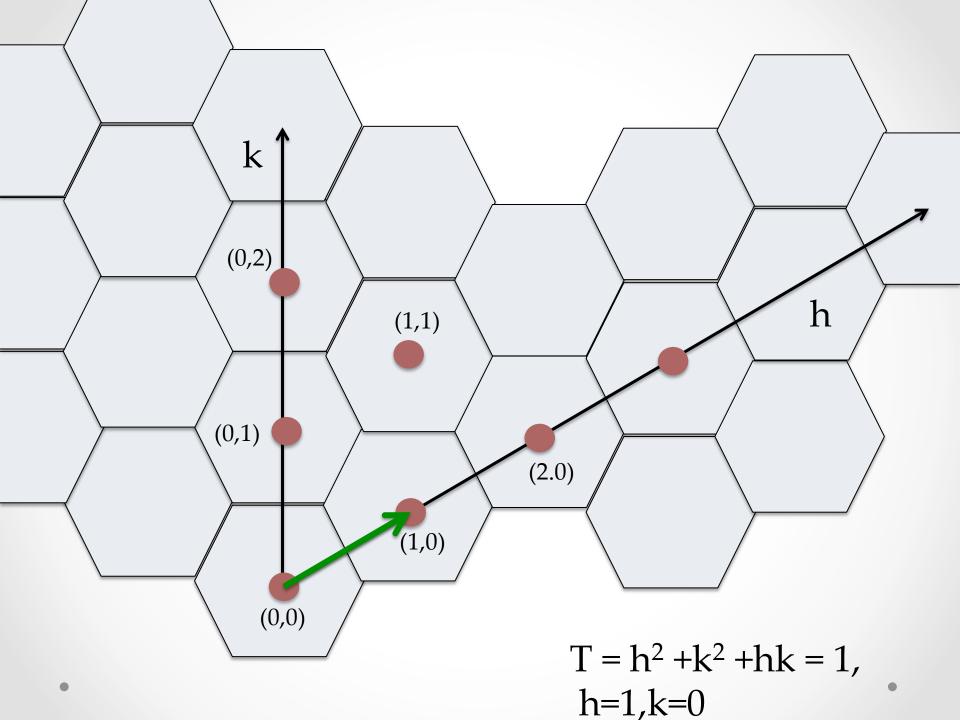
The basic triangular facet of the icosahedron has to be first enlarged and then subdivided into smaller triangles.

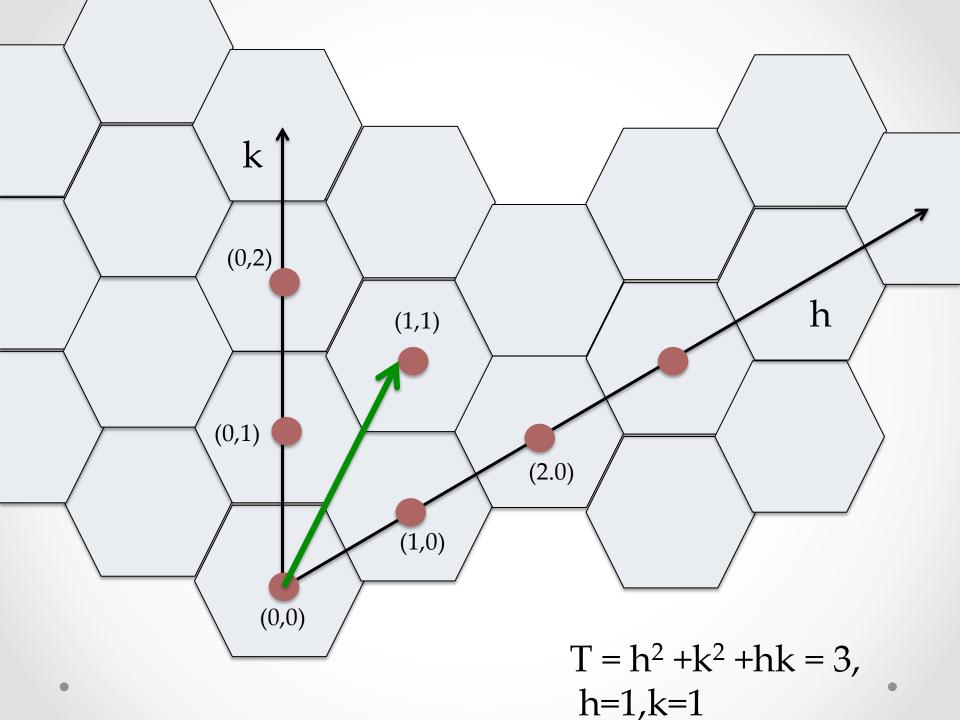
Triangulation dictated by the equation:

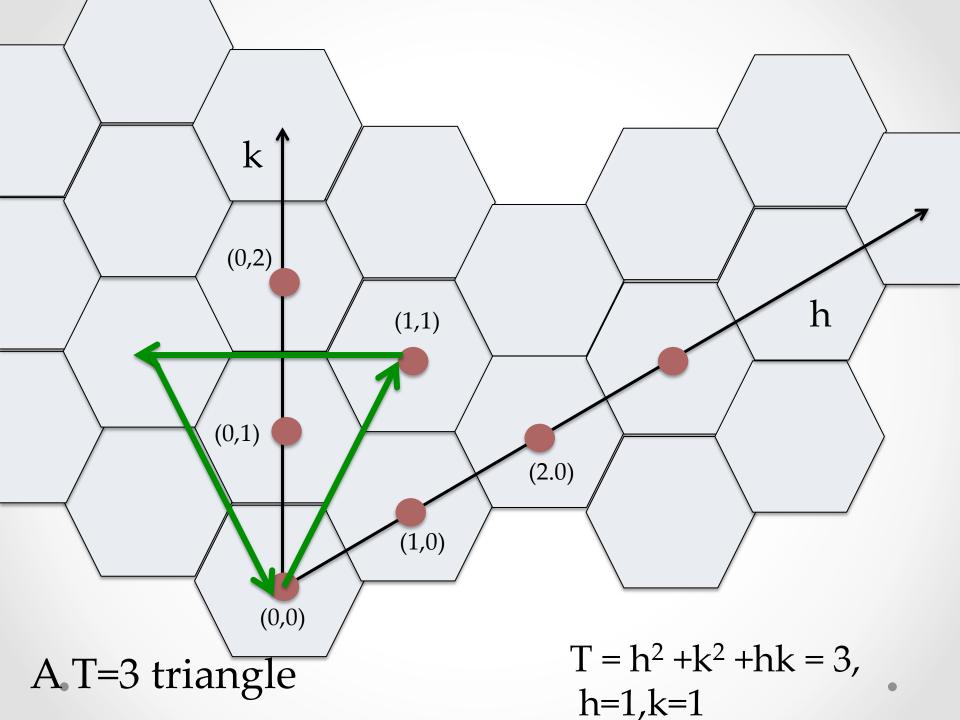
$$T=h^2+hk+k^2$$

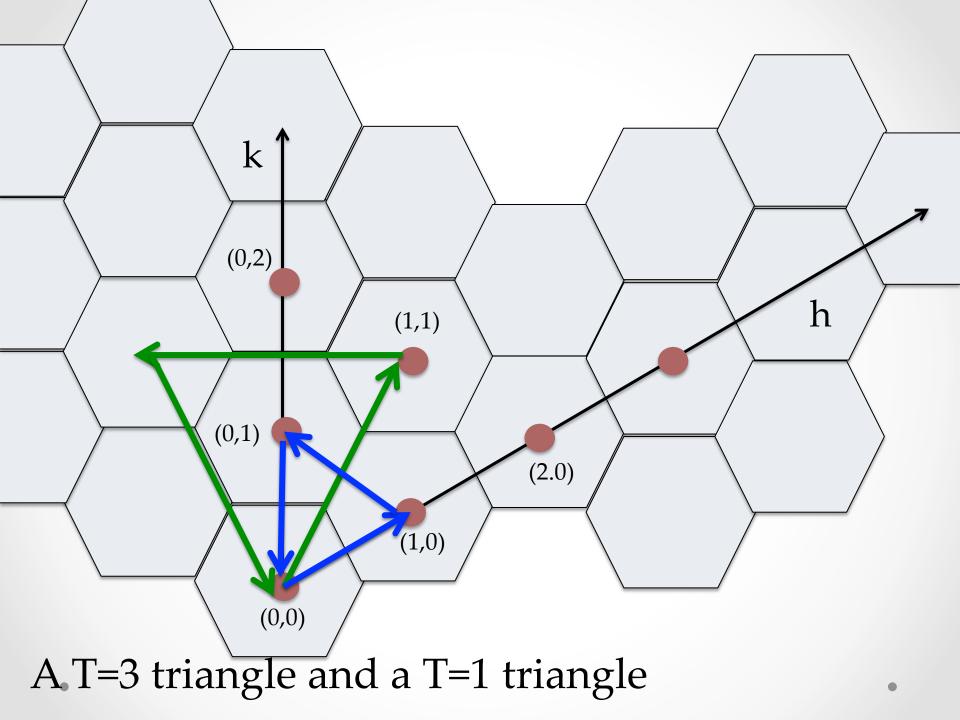
where T is **the triangulation number**, and h and k are 0 or positive integers

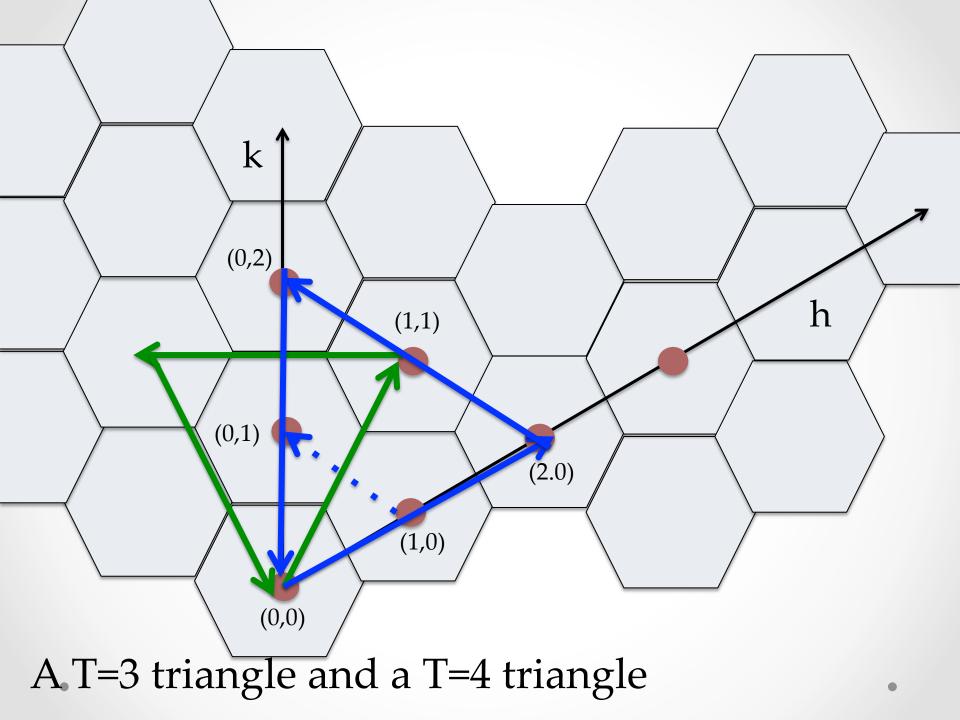


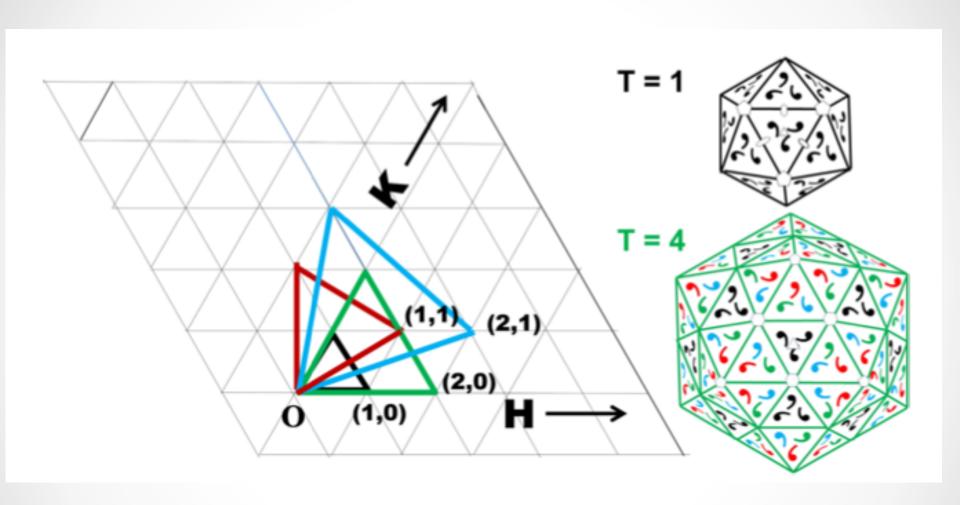


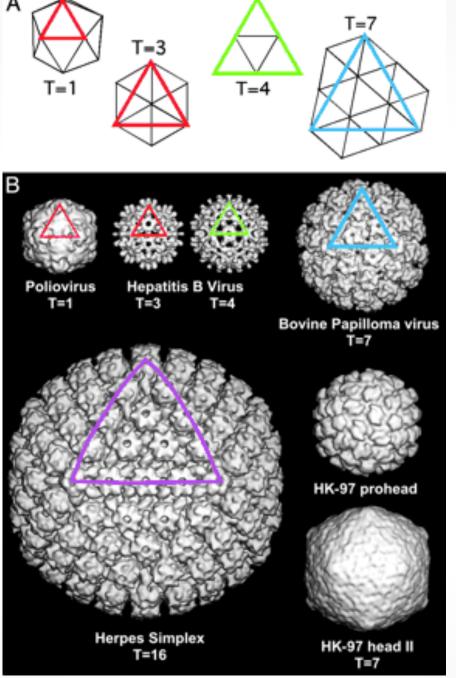






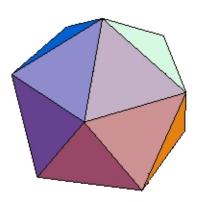




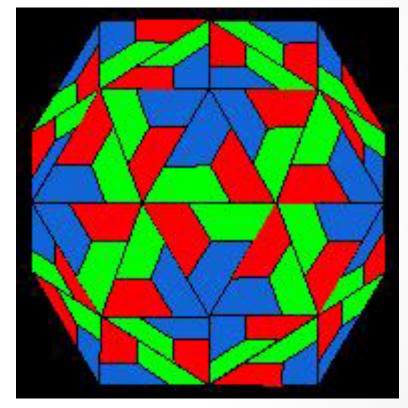


http://www.pnas.org/cgi/content-nw/full/101/44/15549/FIG1

Construction of complex viruses



T=1 (60 subunits)

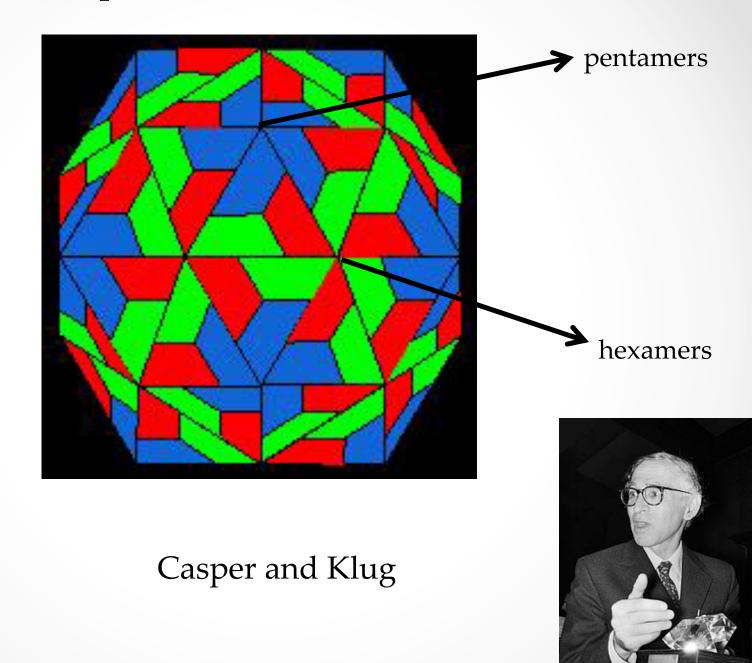


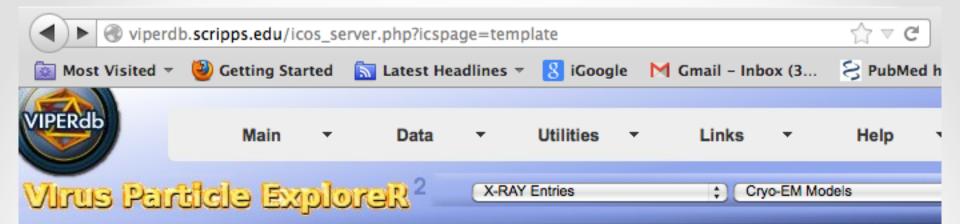
T=3 (180 subunits)

Some examples

P	f	Т	No. of subunits (60T)	Example
1	1	1	60	Satellite tobacco necrosis virus
3	1	3	180	picornavirus
1	2	4	240	Sindbis Virus
1	3	9	540	Reovirus
1	4	16	960	Herpesvirus
1	5	25	1500	Adenovirus

Quasi-equivalence in virus structures





The Icosahedral Server

Main | Paradigm | Paper Template | Icos. Gallery | Swelling of CCMV

Paper Model Templates

Download the original postscript files

Paper hexagonal template sheet

$$T=1 (h,k) = (1,0)$$

$$T=3 (h,k) = (1,1)$$

$$T=4 (h,k) = (2,0)$$

$$T=7 (h,k) = (2,1) / (h,k) = (1,2)$$

$$T=9 (h,k) = (3,0)$$

$$T=13 (h,k) = (3,1) / (h,k) = (1,3)$$

$$T=16 (h,k) = (4,0)$$

$$T=19 (h,k) = (3,2) / (h,k) = (2,3)$$

$$T=21 (h,k) = (4,1) / (h,k) = (1,4)$$

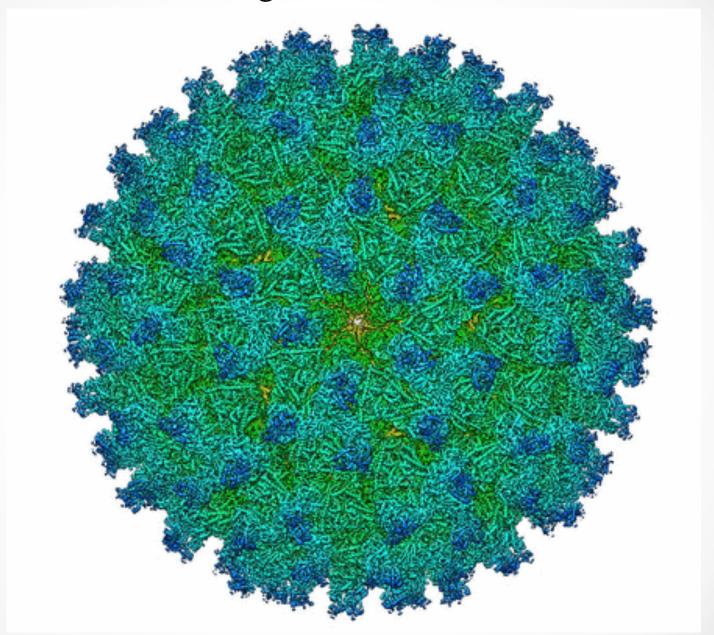
$$T=25 (h,k) = (5,0)$$

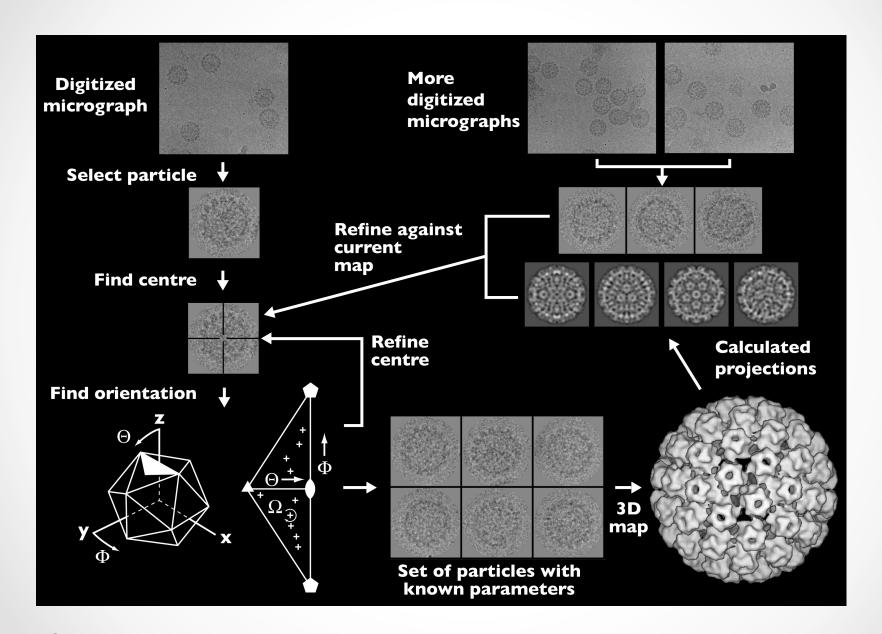
$$T=27 (h,k) = (3,3)$$

$$T=28 (h,k) = (4,2) / (h,k) = (2,4)$$

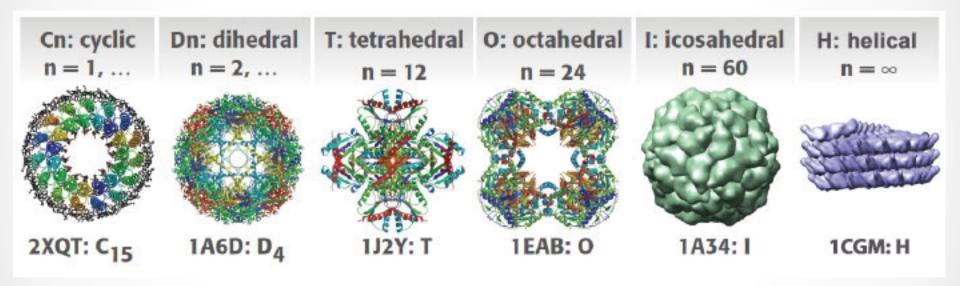
$$T=31 (h,k) = (5,1) / (h,k) = (1,5)$$

Bluetongue virus (EMD6444)





Some examples from PDB/EMDB



Point Group Chart

See only cyclic C_n ? Symmetries are C_n .

See cyclic C_n and C_2 ? D_n

See C_3 and C_2 ? T

See C₄, C₃, C₂? O

See C₅, C₃, C₂? I

References

Point group symmetry of oligomeric macromolecules. Marin van Heel. http://www.singleparticles.org/methodology/MvH_Pointgroup_Symmetry.pdf

Biomolecular crystallography. Bernhard Rupp. http://www.ruppweb.org/

Procedures for three-dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs. R A Crowther. Philos Trans R Soc Lond B Biol Sci. 1971. 261 (837): 221-30

Harmonic analysis of electron microscope images with rotational symmetry. R. A. Crowther and L. A. Amos J. Mol. Biol. 1971, 60, 123-130

Principles of Virus Structural Organization. B.V. Venkataram Prasad and Michael F Schmid. Adv Exp Med Biol. 2012; 726: 17–47

Picture credits:

Personal communication, Barnali Chaudhuri, CSIR-IMTECH, India EMDB Internet Sources