Tools for Cryo-EM Map Fitting

Paul Emsley MRC Laboratory of Molecular Biology

March 2016

Coot (Paul Emsley)

- Crystallographic Object-Oriented Tool-kit
- Primarily a tool for the interpretation of electron density generated from X-ray data
 - with tools for modelling:
 - rotate/translate, rotamers,
 - refinement & regularization
 - add, delete
 - ligand fitting
 - A "workhorse", not a show-pony

For What is Coot Useful?

What resolution ranges for cryo-EM?

- "Resolution Revolution" maps
- 2-3.8A is the strength
- seeing side-chains and purines vs pyrimidines
- Local good fit of model to density

Yeast Mitochondrial Large Ribosomal Subunit

Science	AAAS.OR	.G FEEDBACK	HELP LIBRARI	IANS	All Scier	nce Journals	Journals 🔻		Enter Search Term	
Science						BAT	ES COLLEGE	ALERTS	ACCESS RIGH	
MAAA	S NEWS	SCIENCE JOU	IRNALS CA	REERS	MULTIMEDIA	COLLECTIO	ONS			
Science Th	e World's Lea	ding Journal of (Original Scient	tific Rese	arch, Global New	vs, and Comn	nentary.	5P		
Science Home Cu	rentissue	Previous Issues	Science Expr	ess S	cience Products	My Science	About the J	ournal		
Home > <u>Science</u> Magazine >	28 March 2014	> Amunts <i>et al.</i> , 343	(6178): 1485-148	39						
Article Views							< Prev Tabl	Table of Contents Next >		
Abstract	DOI: 10.1	Vol. 343 no. 6178 pp. 1485-1489 DOI: 10.1126/science.1249410						🏳 Leave a comment (0)		
Full Text	RESEARC	RESEARCH ARTICLE								
> Full Text (PDF)	Ctruct	uro of the V	oost Mito	abond	rial Larga D	ihaaama	Cubusit			
> Figures Only	Struct	ure of the Y	east mito	cnona	riai Large R	iposoma	Subunit			
 Supplementary Materials 	Alexey Ar Garib Mu	Alexey Amunts [*] , Alan Brown [*] , Xiao-chen Bai [*] , Jose L. Llácer [*] , Tanweer Hussain, Paul Emsley, Fei Long, Garib Murshudov, Sjors H. W. Scheres [±] , V. Ramakrishnan [±]								
Article Teels	± Author	Affiliations								
	⁺ Corres	<u>↩</u> [†] Corresponding author. E-mail: <u>scheres@mrc-Imb.cam.ac.uk</u> (S.H.W.S.); <u>ramak@mrc-Imb.cam.ac.uk</u> (V.R.)								
> Save to My Folders	<u></u> ≁* These	≝* These authors contributed equally to this work.								
> Download Citation	ABSTR	ACT EDITOR'S	SUMMARY							
 Alert Me When Article is Cited 	Mitoch	ondria have spec	alized ribosom	es that h	ave diverged from	their bacteria	al and cytopia	ismic		
Post to CiteULike	counte	counterparts. We have solved the structure of the yeast mitoribosomal large subunit using single-particle cryo-electron microscopy. The resolution of 3.2 angstroms enabled a nearly complete atomic model to be built de novo and refined, including 39 proteins, 13 of which are unique to mitochondria, as well as expansion segments of mitoribosomal RNA. The structure reveals a new exit tunnel path and architecture, unique elements of the E site, and a putative membrane docking site.								
Article Usage Statistics	cryo-e built de									
> E-mail This Page	segme									
Rights & Permissions	elemen									
 Commercial Reprints and E-Prints 										
➤ View PubMed Citation	Mitochon	dria are organelle sm. especially th	es in eukaryotic	cells the	at play a major rol e triphosphate (A	ein Rei	lated Resou	rces		

research papers

Acta Crystallographica Section D Biological Crystallography

ISSN 1399-0047

Alan Brown, Fei Long, Robert A. Nicholls, Jaan Toots, Paul Emsley and Garib Murshudov*

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England

Correspondence e-mail: garib@mrc-lmb.cam.ac.uk

Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions

The recent rapid development of single-particle electron cryomicroscopy (cryo-EM) now allows structures to be solved by this method at resolutions close to 3 Å. Here, a number of tools to facilitate the interpretation of EM reconstructions with stereochemically reasonable all-atom models are described. The BALBES database has been repurposed as a tool for identifying protein folds from density maps. Modifications to Coot, including new Jiggle Fit and morphing tools and improved handling of nucleic acids, enhance its functionality for interpreting EM maps. REFMAC has been modified for optimal fitting of atomic models into EM maps. As external structural information can enhance the reliability of the derived atomic models, stabilize refinement and reduce overfitting, ProSMART has been extended to generate interatomic distance restraints from nucleic acid reference structures, and a new tool, LIBG, has been developed to generate nucleic acid base-pair and parallel-plane restraints. Furthermore, restraint generation has been integrated with visualization and editing in Coot, and these restraints have been applied to both real-space refinement in Coot and reciprocal-space refinement in REFMAC.

Received 3 June 2014 Accepted 1 October 2014

New Components

blue: conserved red: found in both yellow: yeast only

Partioning Maps: Watershed Algorithm

1D-analog

Pintilie et al. (2010) J.Struct.Biol.

- How do I rotate and translate these atoms to fit the density?
 - 6-dimensional problem
- Originally used to fit simple ligands/solvent molecules to blobs of density
- Now extended to fit arbitrary atom selections
 - *e.g.* by Chain

Jiggle Fit: How it Works

- Loop n (say 1000) times:
 - Generate random angles and translations
 - Transform atom selection by these rotations and translation
 - Score and store the fit to density
- Rank density fit scores,
 - Pick top 20 solution, for each of them
 - Rigid body fit and score solutions
 - Pick the highest scoring solution if it's better than the starting model)
- Radius of Convergence is larger when using a low-pass map

So we have our ideal RNA or homologous protein sitting roughly in the density

(not a great fit)

Model Morphing: How it Works

- For each residue in a chain, we ask:
 - where does a small fragment centred on this residue want to go?
 - (Robust) average the transformations and apply them on a per-residue basis
- Repeat

Model Morphing: Generating the Raw RTs

Model Morphing: Example

Model Morphing: Robust Averaging

- What are the residues in the environment of a residue?
 - What are their RTs?
 - Create a metric 'distance', sort on that
 - Discard the top and bottom 25%
 - Use remaining RTs to generate average
 - ...which is then applied to central residue
- Repeat for all residues
- Larger environment radii make the shifts smaller/more conservative
 - More cycles needed

Model Morphing

- The distribution of electron density is quite unlike that of x-ray maps
 - e.g. You don't see main-chain atoms at 4 rmsd in x-ray maps
 - regions of dense electron density contribute negatively to helix score

 The distribution of electron density is quite unlike that of x-ray maps

 The distribution of electron density is quite unlike that of x-ray maps

- The distribution of electron density is quite unlike that of x-ray maps
 - e.g. You don't see main-chain atoms at 4 rmsd in x-ray maps
 - regions of dense electron density contribute negatively to helix score
 - These EM maps were sharpened and in a big box of mostly nothing
 - Lots to see at 4 rmsd

Additional Restraints

Restraints Editing in Coot

- Distance Restraints:
 - Alpha helices, A-form RNA, B-form DNA
- Add and delete individual restraints
 - User-selectable sigma
- Select 2 residues for range
- User-defined torsion restraints
- Input from ProSMART
- Output to Refmac

Add Simple C-C Single Bond Restraint... Add Distance Restraint... Add Helix Restraints... RNA A form bond restraints... Delete an Extra Restraint... Save as REFMAC restraints...

13

*~~

ProSMART Interface

- Use previous-solved "template" structures to inform the refinement of the (low resolution) target protein
- Conformation-independent structural comparison/superposition
- and restraint generation

ProSMART integration

- ProSMART generates distance restraints from homologous structures
 - to be applied to current model for refinement
 - now available in Coot

Modified Target Function

ProSMART Restraints

Plane Restraints

Derivativaties are an eigenvector scaled by out-ofplane distance

 $S = (a_1 - a_2)^2 + (b_1 - b_2)^2 + (c_1 - c_2)^2$

Not easy to use in Coot

- Also, we have considered parallel-planes distance restraints
 - More tricky still to implement
 - Not implemented yet (not in *Coot*, anyway)

0.0.0000

Shift to Origin

Shift to Origin

Move Back to Molecule

Automatic Generation of Base Pairing and Stacking Restraints

- Fei Long's libg_d
 - Provide it with a model and it writes out Refmac restraint descriptions
 - ... which *Coot* can also read
 - Coot can also create user-define base-paring and stacking restraints

Libg restraints

(Watson Crick and) Wobble, Reverse Wobble

Representation in Coot

- What is a cis-peptide?
- Peptide restraints in Coot 2004-2015

- A number of paper have been published recently highlighting the unusually large number of cis-peptides in some structures:
 - Croll: The rate of cis-trans conformation errors is increasing in low-resolution crystal structures Acta Cryst. (2015). **D**71, 706-709
 - Touw *et al*.: Detection of trans-cis flips and peptide-plane flips in protein structures *Acta Cryst.* (2015). **D**71, 1604-71614

trans-peptide

cis-peptide

PRO trans-peptide

PRO *cis-peptide*

trans-peptide with plane restraints

cis-peptide with plane restraints

trans-peptide with plane and trans restraints

cis-peptide Representation

Interactive Map Sharpening

Successfully read coordinates file coot-download/pdb2xgj.ent. Molecule number 3 created.

More Resources

- Coot Mailing list on JiscMail
- Oliver Clarke's Dropbox

Acknowledgements

- LMB:
 - Garib Murshudov, Rob Nicholls, Fei Long,
 - Alexey Amunts, Alan Brown
- Kevin Cowan, Bernhard Lohkamp
- Libraries & Dictionaries:
 - Jane & Dave Richardson
 - Alexei Vagin
 - Eugene Krissinel