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Principle of image formation
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Resolving power of microscopes
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First electron microscope
Major discoveries:

* Accelerated electrons behave like light in vacuum
Travel in straight lines, wave like properties
Wavelength 100,000 x shorter than visible light

* Electric and magnetic fields could be used to bend
and focus electrons
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First electron microscope (TEM) designed and built
by Ernst Ruska in 1931
Lens for electrons constructed in 1926 by H. Busch
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Resolution ~ 100 nm

(~ 200 nm for modern light
microscopes)
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Schematic of an electron microscope

Electron gun
Condenser lenses convert diverging electron beam

H aperture  into parallel beam
“S————— Condenserlens  Objective aperture prevents electrons scattered at
g object high angles from reaching image plane, improves
——
: contrast
< 77 —> Objective lens
L5 Provides initial magnification (20-50x)
| = | aperture
Aberration affects image formation
L — Projector lens

: Intermediate and projector lenses further magnity
v image

- Image



Sources of electrons

Tungsten filament

- Heated to 2000-3000 °C

- Thermionic emission

- Electrons accelerated by electric field between anode and filament
- Energy distribution 2.5 eV

- 40-50 Kx magnification

"/

-

LaB, crystal

- Thermionic emission

- Electrons produced from crystal vertex W fiament LaB FEG
- Lower temperature required, lower work function i = -
- Better brightness and lifespan compared to tungsten — \/

- Require higher vacuum levels
- Energy distribution 1.5 eV
- 50-100 Kx magnification

www.biologicalelectronmicroscopy.com



Sources of electrons

Schottkey type Field emission gun (FEG) source
- Single crystal tungsten tip sharpened to 10-25 nm diameter

- Coated with ZrO,

- Thermally emitted electrons, extracted by strong potential gradient (field emission)
- Accelerated through 100-300 KV

- Extremely bright (~ 500x more than tungsten), very coherent

- Energy distribution 1.0 eV
- >100 Kx magnification

Cold FEG

- No heating required

- Better brightness

- Energy distribution 0.25 eV
- More intense maintenance

00 » - from Williams
& Carter (2nd ed)



Lenses in electron microscopy

electron beam
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Electromagnetic lenses, varying current in coils alters lens power

Orlova and Saibil, Chem Rev, 2011



Lens aberrations

Orlova and Saibil, Chem Rev, 2011



Lens aberrations

Spherical aberration
- Diffracted rays with higher angle of incidence converge before the focal point

- correction depends on lens design and manufacture



Lens aberrations
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Chromatic aberration

Chromatic aberration

- Longer wavelength rays focused more strongly
- Colored halos around images, blurs fine details
- Result of variation in electron energy

- Fixed by stable accelerating voltage



Lens aberrations

/ > = = S
) \
/ .
7 S 1
No Regular Irregular
Astigmatism Astigmatism Astigmatism

Astigmatism

- Caused by asymmetric magnetic field in lenses
- Point becomes ellipse

- Compensated by stigmator coils




Interaction of electrons with samples

Upon elastic collision of electrons with atom, electrons will be scattered with no
change in kinetic energy

- contribute to image formation

Upon inelastic collision of electrons with atoms, a part of the kinetic energy of
electrons is transferred to the atom

- can ionize atoms, generate free radicals, alter chemical bonds, generate X-rays
- contribute to noise



Interaction of electrons with samples

Incident electrons
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Generation of contrast in images

Amplitude contrast:

-

Part of beam absorbed by the sample
Produces image contrast

Problem: Biological samples do not
absorb beam, rather deflect beam
Intensity difference very small

°
Orlova and Saibil, Chem Rev, 2011



Generation of contrast in images

Phase contrast-
> = »
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——p e O at various angles
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= ﬁ f ] - E Have different path lengths
= f}iﬁ. Q throughout sample

Emergent beam undergoes
constructive or destructive
interference with parallel beam

Phase variations may be
converted to amplitude
variations
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Generation of contrast in images

Biological samples consist of light atoms - C, H, O, N

°
Nagayama and Danev, Philo Trans Royal Soc B, 2008



Generation of contrast in images

Transparent object varies in refractive index or thickness

Amplitude of emergent wave remains same, phase differs

T (x, y) =Agexp [ip(x, y)], Ap=1

Representation of emergent wave (assuming sample is thin, and phase shift is small):
exp [id] =1 +id (weak phase object)

Therefore, T (x, y) =1 +id

Observed intensity: I* (x, y) =T? (x, y) =1 +ip =1

With additional phase shift of 90°, however, I? (x, y) =T? (x, y) = (1 - p)* =1 - 20



Phase contrast microscopy
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Generation of contrast in images

Phase Contrast Microscope Configuration
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Figure 1

Fritz Zernike (1934) - Phase contrast microscopy
Phase plates introduced in the back focal plane of objective lens

Shifts phase of scattered waves by 90°, amplitude contrast 4

http://www.microscopyu.com/



Generation of contrast in images

Improvement in contrast of biological samples

°
http://www.microscopyu.com/



Generation of contrast in electron microscopy

Combination of various factors generate contrast
1) Spherical aberration
2) Defocus

3) Apertures

Induce phase shift, cut off inelastically scattered electrons



Generation of contrast in electron microscopy

Spherical aberration
- Diffracted rays with higher angle of incidence converge before the focal point
- correction depends on lens design and manufacture



Generation of contrast in electron microscopy
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Adapted from Marin van Heel,
F F Principles of Phase Contrast Microscopy



Generation of contrast in electron microscopy
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Spherical aberration

Wavefront
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Spherical aberration
Phase shift ~ Defocus

Radial frequency

Defocus and spherical aberration together cause phase shift at the back focal plane

Contrast generation

Adapted from Marin van Heel,
Principles of Phase Contrast Microscopy



Microscope properties affecting image formation

Lens aberrations
Coherence of source
Drift
Quality of ice
Alterations in lens current
Quantum noise

Instrumental or environmental instability



Microscope properties affecting image generation

- / o
PSF

Point Spread Function (PSF) represents microscope aberrations
Convolution of Object (FT) with PSF (FT) generates image
Imperfections transferred to image

Orlova and Saibil, Chem Rev, 2011



Microscope properties affecting image generation

©2005 TapDancir



Microscope properties affecting image generation

Fourier Transform of PSF = Contrast Transfer Function (CTF)
Describes the imaging properties of the objective lens

Can be used to describe the influence of factors on image quality
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F{Wa (1)} = F{W,,()}.CTF(R).E (R)
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F{PSF(r)} = CTF(R) .E(R)



Microscope properties affecting image generation

o Astigmatesoy -

Effect of defocus and astigmatism on CTF
Acts as a band pass filter

o
Orlova and Saibil, Chem Rev, 2011



Imaging cryo samples — Low dose mode

Incident electrons generate heat

Biological samples degrade

Area to be imaged not exposed until the image is taken
Focusing and alignment done on a different site

Electron dose — 5 -10 electrons/A2

Signal to noise ratio (SNR) very low






Methods for contrast and SNR improvement

Sample level: Cryo-negative staining
Microscope level: phase plate, energy filters, aperture size, defocus

Data collection level: direct detectors, automated collection



Negative staining with heavy metal

Very small amount of electrons absorbed by biological samples
Heavy metal salt, that absorbs electrons fairly easily, used for negative staining

Uranium, tungsten, molybdenum, vanadium, lead




Negative staining with heavy metal

Drying step required

May cause dehydration-related damage
Formation of artifacts

Only surface features visible, low resolution

Structural details of external or internal regions not available
Possible to get low resolution reconstructions

Samples may have preferred orientation on continuous carbon film



Methods for contrast and SNR improvement

Sample level: Cryo-negative staining
Microscope level: phase plate, energy filters, aperture size, defocus

Data collection level: direct detectors, automated collection



Cryo-negative staining

Prevalent method developed by Marc Adrian in 1998

A thin layer of Au/Pd on one side of grid — allows sample spreading
Slurry of ammonium molybdate as staining solution

Quick dip in stain on parafilm, dried for 1-3 s, plunge freezing

Some dehydration expected



Cryo-negative staining

Cryo-EM Cryo-NS

@
o2 ©

Reconstructions of GroEL frozen with and without stain

o
De Carlo and Harris, Micron, 2011



Cryo-negative staining

RNA polymerase solved with cryo-negative staining

o
De Carlo and Harris, Micron, 2011



Methods for contrast and SNR improvement

Sample level: Cryo-negative staining
Microscope level: phase plate, energy filters, aperture size, defocus

Data collection level: direct detectors, automated collection



Introduction of phase plate

a b Light phase c Transmission d
microscope electron microscope

-------- Light source -------
- --- Condenser lens -

phase plate :

tommm - - - - Aperture ------ 2
Eyepiece CJ _‘_YD Projector
lens

lens !
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Phase plates introduced in the back focal plane of objective lens

Shifts phase of scattered electrons by 90°

Contrast improved upon combination with unscattered electrons
“Invisible” phase contrast converted into “recordable” amplitude contrast

o o
Orlova and Saibil, Chem Rev, 2011



CryoET using Zernike phase plate

°
Danev et al., ] Struct Biol, 2010



Energy filtering

Removal of inelastically scattered electrons

Lower energy, longer wavelength

Chromatic aberration, electrons focused in different planes
Causes blurriness in image

Removed by in-column or post-column filtration



EFTEM: In-Column and Post-Column Energy Filters
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From Williams and Carter, Transmission Electron Microscopy, Springer, 1996

PASI - Electron Microscopy - Chile Lyman - Spectrum Imaging s 7



Imaging of actin filaments using a  type energy filter

3,000

2,000 ¢

1,000

Number of segment images

163.6 164.6 165.6 166.6 167.6 168.6 169.6
Rotation per subunit (°)

o
Fujii et al., Nature, 2010



Controlling apertures

Electron gun

H aperture
L —— —> Condenser lens
et object
& . > Objective lens
I l aperture
SIS Projector lens
A4 - Image

Condenser lenses convert diverging electron beam
into parallel beam

Objective aperture prevents electrons scattered at
high angles from reaching image plane, improves
contrast

Provides initial magnification (20-50x)

Aberration affects image formation

Intermediate and projector lenses further magnify
image

Orlova and Saibil, Chem Rev, 2011



Images collected at different defocus values
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Image courtesy Rebecca Taurog and John E. Johnson, The Scripps Research Institute




Methods for contrast and SNR improvement

Sample level: Cryo-negative staining
Microscope level: phase plate, energy filters, aperture size, defocus

Data collection level: direct detectors, automated collection



Detection system

CCD camera

Incident electrons converted to photons

Fiber optics transfer image to charge coupled device sensor
Photons generate electric charge

Charge converted to pixel for readout
eeeeee

, | B O / Scintillator (room temp.)
Fiber optics
/ P

CCD array
-

| Peltier cooler

_— Camera vacuum chamber




Direct Electron Detector

CCD: multi stage conversion of electron CMOS: direct conversion of electron
energy via fiber or lens optics energy without fiber or lens optics

Electronics and
interconnect

(a few um thick)

Sensitive volume
(2 - 20 pm thick)

Substrate

° °
www.fei.com



Advantages of Direct Electron Detector

Direct counting of electrons
Reduced noise from detector

Fast frame rate, correction of beam induced movement possible

Subframe alignment

°
Grigorieff, eLife, 2013



Computer controlled data collection

Automation of repetitive operations: Searching for suitable areas for imaging

Lens setting, stage movement
Low dose operation

Large dataset collection

Basic image FTs

Typically, overview images collected

cross-correlated with manually collected images
High-mag recording after low-mag searches



Computer controlled data collection

Leginon Import

Host name == Database Name ==
Leginon DB [bh02frank15.cpme.columbia.edu |leginondb|

ProjectDB  [bb02frank15.cpme.columbia.edu |projectdh

Leginon Credentials Database Credentials
Userame  [namho |
Password [ |
= Note that the Database
Ll | Information will be
supplied by your System

Administrator

Go Back Continue

° NRAMM

National Resource for Automated Molecular Microscopy
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Particle Picking




Particle Picking

Template matching;:

Match between image and reference image scored
Cross-correlation based methods

Sensitive to variations in spatial frequency

Multiple references required to account for different views

Rotationally averaged references/azimuthally averaged particle image

Image 1

(x.y) qlxy)

Image 2

o o
Nicholson and Glaeser, | Struct Biol, 2001



Particle Picking

Edge detection:
Identification of blobs in image, assignment of labels to adjacent pixels
Too close or too large “bounding boxes” rejected

Somewhat insensitive to spatial frequency

o o
Nicholson and Glaeser, | Struct Biol, 2001



Particle Picking

Intensity comparisons:
Objects with uniform internal density selected
Image subjected to horizontal-vertical scan to identify clusters

Post-processing checks

Nicholson and Glaeser, ] Struct Biol, 2001



Particle Picking

Texture based methods:
Computes local variance over small area
High values of local variance indicate presence of object

Also detects aggregates/contaminants

o o
Nicholson and Glaeser, | Struct Biol, 2001



Problems — heterogeneity, contaminants, background noise

Data set with partial ligand occupancy

Eigenimages

Eigenimages of real data ¥ |

200
= 4
Orlova and Saibil, Chem Rev, 2011
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