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Image processing workflow

Micrographs 

CTF estimation 

Particle picking 

2D class averages 

3D refinement 

3D classification 

B-factor sharpening 

Map interpretation

Initial model

Average to 
increase SNR!



Micrograph

Reference free 2D class average

3D map

orientation determination, refinement 
reconstruction



Projection slice theorem



convention of Eulerian angles which expresses the rotation of a 3D rigid
body by the application of three matrices:
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Angle c is responsible for the in-plane rotation of the projection (Fig. 1.1)
and is considered trivial as it does not affect information content of the ray
transform. The two Eulerian angles ’,y that define projection direction
with the in-plane rotation c and in-plane translations tx,ty are in EM jointly
referred to as projection orientation parameters. The distribution of projection
directions may be conveniently visualized as a set of points on a unit half-
sphere (Fig. 1.2).

In Fourier space, the relationship between an object and its projection is
referred to as the central section theorem: the Fourier transformation G of
projection g of a 3D object d is the central (i.e., passing though the origin of
reciprocal space) 2D plane cross-section of the 3D transform D and is
perpendicular to the projection vector (Bracewell, 1956; Crowther et al.,
1970b; DeRosier and Klug, 1968):
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Figure 1.1 The projection sphere and projection g(xt) of d(r) along t onto the plane
t ? x. The convention of Eulerian angles as in Eq. (1.2).
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determine 3 euler angles  
and X+Y shifts



Initial 3D model

Projection matching



3D Reconstruction



Cryo-EM images - reality

• Electrons damage biological material 
– Low dose: large amounts of noise!  

• We need to defocus to get contrast 
– Strong artefacts (CTF) [a good phase plate will solve 

this] 

• We can’t control how the particles fall on the grid 
– Unknown orientations & classes 

Inverse, Incomplete, Ill-posed problems



The forward model (in real-space)

Xi =CTFi ⊗PϕVk +Ni

Given V, φ and CTF, we can simulate X very well. 

 Inverse problem

But the opposite is very difficult.

SPEMS - Single particle electron microscopy simulation 
(Greg McMullan unpublished)



Incomplete data problems

• Part of the data was not observed experimentally 
– Orientations 
– Class assignments 

• Difficult to solve! 
– Iterative methods? 

• Complete data problem would be very easy to solve



Incomplete data problems

Missing data (Y): orientations

Observed data (X): images

Not easy
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Complete data problems

Easy



Incomplete data problems

• Option 1: add Y to the model

( ) ( )Θ=Θ ,|, YXPYL

Maximum  
cross-correlation  
/ least-squares

Maximum  
Likelihood

( ) ( ) φdYPYXPXPL
Y
∫ ΘΘ=Θ=Θ |,|)|()(

Probability of X,  
regardless Y

• Option 2: marginalize over Y



The maxCC approach



Reference-based alignment

• Starts from some initial guess about the structure
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Align and average

CC avgalign

Iterate!



CC avgalign

Iterate!

Align and average



The ML approach

Single-reference alignment in real-space 
Sigworth, J. Struct.Biol. 1998
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Maximum likelihood

Do not assign discrete 
orientations if the 

noise in the data does 
not allow this...
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Incomplete data problems

• Option 1: add Y to the model

( ) ( )Θ=Θ ,|, YXPYL

Maximum  
cross-correlation

Maximum  
Likelihood

( ) ( ) φdYPYXPXPL
Y
∫ ΘΘ=Θ=Θ |,|)|()(

Probability of X,  
regardless Y

• Option 2: marginalize over Y



Incomplete data problems

Maximum  
cross-correlation

Maximum  
Likelihood

In the limit of noiseless data the  
Two techniques are equivalent!

Scheres et al Methods in Enzymology, 482 (2010)



Projection matching

Initial 3D model



maxCC

compare
with all 

projections

Projection matching



3D reconstruction



3D reconstruction 
(Iterative refinement)



Iterative refinement



3D ML refinement

“Probability-weighted angular assignment”

Do not make 
hard decisions  

if the noise  
impedes this



Initial model

• Local optimizer! 
– Gets stuck in nearest local minimum 
– (as most other approaches in the field) 

• Need an initial model (see next lecture) 
– Start from random angles will often NOT work 
– (unlike the 2D case) 

• Bad model in -> bad model out!!! 
– Model bias 
– Bad common-lines models are notoriously difficult 

• Stochasticity 
– Randomly perturb optimisation (á la Simulated Annealing in X-ray) 
– Can potentially reach global minimum 
– Do refine from random blobs 
– SIMPLE (Hans Elmlund), EMAN2 (Steve Ludtke)



Fourier-space formulation

CTF correction



CTF-correction

CTF corrected Not CTF corrected



Projection slice theorem



Data model

• Real-space 

• Convolute w/ CTF 
• Pφ implements integrals 

• Ni describes white noise

• Fourier space 

• Multiply w/ CTF 
• Pφ takes a slice 
• Ni describes coloured noise

Xi =CTFi ⊗PϕVk +Ni Xi =CTFiPϕVk +Ni



Coloured noise model
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Assuming independence of noise between all Fourier terms:

resolution-dependent noise model!

Scheres et al. (2007) Structure



Coloured noise!!

resolution (Å-1)

σ2

(for different groups)



Ill-posedness

• The experimental data alone is not enough to determine a 
unique solution! 

• There are many noisy reconstructions that describe the data 
equally well… 

• Danger of incorrect interpretation…



• By incorporating external information, a different problem 
may be solved for which a unique solution does exist! 

• Regularization 

• Conventional regularization approaches 
– Wiener filtering 
– Low-pass filtering



Ad-hoc regularisation

Low-pass filter the map 
at every iteration 

Many different ways and implementations…



A Bayesian view on regularization
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Posterior =
Likelihood * Prior

Evidence

Regularised likelihood optimisation - RELION

Scheres 2012



Likelihood

• Assume noise is Gaussian and independent  
– in Fourier space 
– with spectral power σ2(υ): coloured noise
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• Assume signal is Gaussian and independent  
• in Fourier space 
• Limited power τ2(υ): smoothness in real space! 



Expectation maximization
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indication of the SNR at any point in the 3D Fourier
transform of the resulting reconstruction. Under the
assumptions made above, for Fourier components
where both terms are equal, the power of the noise
in the reconstruction is expected to be as high as the
power of the signal, that is, SNR=1. Again, the
statistical approach yields a result that is similar but
not equivalent to that of existing approaches. The
ratio of these two terms is most similar to the
previously defined 3D spectral signal-to-noise

ratio23 but provides additional insights into how
to take the CTFs into account. To avoid confusion
with previously reported SSNR definitions, I will
use the notation SNRl

MAP, for SNR in the MAP
estimate. Straightforward rewriting yields the fol-
lowing expression:

SNRMAP
l =

H 2
l

PN
i = 1

R
f C

nð Þ
if
PJ

j = 1 P
fT
lj
CTF2ij
r2ij

df
ð13Þ

The SNRl
MAP yields a resolution estimate that

varies in 3D Fourier space (i.e., with l), depending
on the power of the signal, the power of the noise,
the CTFs, and the orientational distribution of the
2D experimental images. However, often, a single
value for the resolution of a given reconstruction is
preferred. Therefore, the resolution-dependent
spherical average of SNRl

MAP may be useful. I
will refer to this spherical average as the SSNRMAP

and propose the highest resolution at which
SSNRMAPN=1 as an objective resolution criterium
for a structure determined by MAP estimation.
The iterative use of Eqs. (9–11) deserves further

attention. The values of τl2(n) are calculated directly
from the squared amplitudes of Vl

(n) and then used
to calculate Vl

(n+1) in the next iteration. For those l
where SNRl

MAP is large, Vl
(n+1) will be calculated as

a weighted sum over the 2D experimental images,
much like the unregularized ML methods or the
reconstruction in Eq. (2). For those l where SNRl

MAP

is small, the amplitudes of Vl
(n+1) will be effectively

dampened. If refinement is started from a strongly
low-pass filtered reference structure, τl2(1) (and thus
SNRl

MAP) will only be large for the lowest frequency
terms. Dampening of all higher-resolution terms
will therefore result in relatively low-resolution
estimates of V during the initial iterations. Never-
theless, the resolution of the reconstruction may
gradually improve, provided that the SNR in the
experimental images is high enough and enough
iterations are performed. At some point in the
iterative process, the resolution will stop improving
because averaging over the noisy higher-resolution
Fourier components no longer yields sufficiently
high values of SNRl

MAP.
There remains one problem with the direct

implementation of Eqs. (9–11). Their derivation
depends on the assumption of independence be-
tween Fourier components of the signal. This
assumption is known to be a poor one because the
signal, a macromolecular complex, has a limited
support in real space. Consequently, the power in the
signal will be underestimated, and the reconstruc-
tion will be oversmoothed. Because the assumptions
of independence are crucial in the derivation of a
computationally tractable algorithm, heuristics
seemed the only reasonable solution to this problem.
Therefore, in the calculations presented below, all

Ex
pe

rim
en

ta
l d

at
a:

im
ag

es
“Orientations”

Structure

Bayes’ law

“Smooth reconstruction”

“Alignment”

New Structure
Pr

io
r i

nf
or

m
at

io
n:

sm
oo

th
ne

ss

iterate

Fig. 1. A schematic interpretation of the approach. A
structure is iteratively refined through a two-step proce-
dure. The first step, which is called Expectation in
mathematical terms, has been labeled “Alignment.” In
this step, computer-generated projections of the structure
are compared with the experimental images, resulting in
information about the relative orientations of the images.
Orientations are not assigned in a discrete manner, but
probability distributions over all possible assignments
[Γiϕ

(n )] are calculated, and the sharpness of these distribu-
tions is determined by the power of the noise in the data.
The second step is called Maximization and has been
labeled “Smooth reconstruction.” In this step, the exper-
imental images are combined with the prior information
into a smooth, 3D reconstruction through Eq. (9), and
updated estimates for the power of the noise and the
signal in the data are obtained through Eqs. (10) and (11).
The relative contributions of the data and the prior to the
reconstruction are dictated by Bayes' law and depend on
the power of the noise and the power of the signal in the
data [see Eq. (9)]. The new structure and the updated
estimates for the power of the noise and the signal are then
used for a subsequent iteration. Iterations are typically
stopped after a user-defined number or when the
structures do not change anymore.
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Expectation

Maximization

The statistical approach employs the same image
formation model as described in Eq. (1) but
explicitly assumes that all noise components Nij
are independent and Gaussian distributed. The
variance σij

2 of these noise components is unknown
and will be estimated from the data. Variation of σij

2

with resolution allows the description of nonwhite
or colored noise. The assumption of independence
in the noise allows the probability of observing an
image given its orientation and the model to be
calculated as a multiplication of Gaussians over all
its Fourier components,21 so that:

P Xi jf;Q;Yð Þ =
YJ

j=1

1
2kj2

ij
exp

#
jXij−CTFij

PL
l=1 P

f
jl Vl j2

−2j2
ij

 !

ð6Þ

The correct orientations ϕ for all images are not
known. They are treated as hidden variables and are
integrated out. The corresponding marginal likeli-
hood function of observing the entire data set X is
then given by:

P X jQ;Yð Þ =
YN

i=1

Z

f
P Xi jf;Q;Yð ÞP f jQ;Yð Þdf ð7Þ

where P(ϕ|Θ,Y) expresses prior information about
the distribution of the orientations. These distribu-
tions may include Gaussian distributions on the
origin offsets (e.g., see Ref. 6) but their exact
expression and the corresponding parameters will
be ignored in what follows.
Calculation of the prior relies on the assumption of

smoothness in the reconstruction. Smoothness is
encoded in the assumption that all Fourier compo-
nents Vl are independent and Gaussian distributed
with zero mean and unknown variance τl2, so that:

P Q jYð Þ =
YL

l=1

1
2kH 2

l
exp

jVl j 2

−2H 2
l

! "
ð8Þ

The assumption of zero-mean Fourier compo-
nents of the underlying 3D structures may seem
surprising at first. However, given that Fourier
components may point in any (positive or negative)
direction in the complex plane, their expected value
in the absence of experimental data will indeed be
zero. The regularizing behavior of this prior is
actually through its scale parameter τl2. By impos-
ing small values of τl

2 on high-frequency compo-
nents of V, one effectively limits the power of the
signal at those frequencies, which acts like a low-
pass filter in removing high-frequency noise, and
thus imposes smoothness. Note that the explicit
assumptions of independent, zero-mean Gaussian
distributions for both the signal and the noise in the

statistical approach are the same ones that underlie
the derivation of the Wiener filter described above.
Eqs. (6–8) together define the posterior distribu-

tion as given in Eq. (5). For a given set of images Xi
and their CTFs, one aims to find the best values for
all Vl, τl

2, and σij
2. Optimization by expectation

maximization22 yields the following algorithm (also
see Fig. 1):
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R
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ij
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l
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if jXij−CTFij

XL

l=1

Pf
jl V

nð Þ
l j 2df ð10Þ

H 2 n + 1ð Þ
l =

1
2
jV n + 1ð Þ

l j2 ð11Þ

where Γiϕ
(n) is the posterior probability of ϕ for the

ith image, given the model at iteration number (n),
which is calculated as:

G nð Þ
if =

P Xi jf;Q nð Þ;Y
# $

P f jQ nð Þ;Y
# $

R
fVP Xi jfV;Q nð Þ;Y

# $
P fVjQ nð Þ;Y
# $

dfV
ð12Þ

Just like in related ML methods,6 rather than
assigning an optimal orientation ϕi⁎ to each image,
probability-weighted integrals over all possible
orientations are calculated. Apart from that, Eq. (9)
bears obvious resemblance to previously reported
expressions of the Wiener filter for 3D reconstruc-
tion [see Eq. (4)]. This may not come as a surprise,
since both derivations were based on the same
image formation model and the same statistical
assumptions about the signal and the noise. How-
ever, Eq. (9) was derived by straightforward
optimization of the posterior distribution and does
not involve any arbitrary decisions. As is typical for
parameter estimation inside the expectation–maxi-
mization algorithm, both the power of the noise and
the power of the signal are learned from the data in
an iterative manner through Eqs. (10) and (11),
respectively. The result is that Eq. (9) will yield an
estimate of V that is both CTF corrected and low-
pass filtered, and in which uneven distributions of
the orientations of the experimental images are
taken into account. As such, to my knowledge, this
expression provides the first implementation of the
intended meaning of the Wiener filter in the case of
3D reconstruction.
The relative contribution of the two additive terms

in the denominator of Eq. (9) also gives an objective
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• 3D-EM refinement 
– Inverse problem: needs iterating 
– Incomplete problem: needs marginalizing 
– Ill-posed problem: needs regularizing 

• Regularised likelihood approach 
– Does all 3 things in optimizing a single function! 
– 2D classes, 3D classes or 3D refinement 
– “Learns” optimal parameters from the data 
– Few ad-hoc parameters to tune by the user



Software -EM

EMAN - Electron Micrograph Analysis, multipurpose 

FREALIGN - only refinement and reconstruction (ML in classification) 

IMAGIC - multipurpose, ab-initio 

SPIDER - multipurpose 

SPARX - multipurpose and robust clustering 

Xmipp - multipurpose, uses ML in many steps 

RELION - classification, refinement and reconstruction, uses ML 

SIMPLE/PRIME - multipurpose, ab-initio 

Bsoft - multipurpose



• overfitting 

• is my refinement improving ? 

• how many particles do I need to get ‘X’ Å resolution? 

• resolution doesn’t improve despite adding more 
particles 

• orientation distribution 
• validation

3D refinement: practical problems



Overfitting: refinement of noise



Overfitting: refinement of noise

Map from real particles 
         (blue circles)

Map from noise 
    (red circles)



Overfitting: refinement of noise

Map from real particles 
         (blue circles)

Map from noise 
    (red circles)



Fig.1

(c)

(d)

(e)

(f )

(g)

(h)

(a) (b)

0.0 0.1 0.2 0.3

4

8

12

Resolution (1/Å)

Ln
(R

ad
ia

l p
ow

er
)

3200 particles
3200 backgrounds
part - back

High resolution noise substitution – the concept"

micrograph"

power spectra"
particles (red)"

background (blue)"
signal (green)"

raw particles"
"
random > 1/17 Å-1"
"

noise > 1/17 Å-1"
"

random > 1/10 Å-1"
"

noise > 1/10 Å-1"
"

noise regions"

Chen et al., 2013

High-resolution noise substitution/phase randomisation



Fig.3

(a) (b)

(c) (d)

Four different procedures give four different amounts of �overfitting� and resolution overestimation"High-resolution noise substitution/phase randomisation

Chen et al., 2013



Gold-standard refinement



Reported	FSC	

FSC	vs	truth	 4.6Å	
7.8Å	

The pitfalls of undetected overfitting

• 20,000 simulated GroEL particles 

• Conventional projection matching

FSC between map and (perfect) model  
at FSC = 0.5 

FSC between two independent half data 
sets at FSC = 0.143

Rosenthal and Henderson 2003Scheres and Chen 2012



Conventional FSC (——-) 
gold-standard FSC (——) 

map vs model FSC (- - - - ) 
map vs model FSC (- - - - )

ß-galactosidase

gold-standard conventional



Overfitting within the half-maps



Orientation accuracy, 0.9 deg
          4.5 Å 
           final

Refinement: Improvement of map 

             50 Å 
             start

Orientation accuracy -999 deg





15 Å10 Å7 Å4.2 Å

Resolution: features that are visible



Btotal = Bimage + Bcomputational

No. of particles - B-factors

Npart = (1/Nasym)[(<S>2/<N>2)30π/Nesed]eB/2d2

an identical intercept at zero angle ðd ¼ 1Þ where
the temperature factor has no effect and which cor-
responds to the amplitude expected for Wilson
statistics.

The extrapolated noise level (F ¼ 6028.8) for one
particle image intersects the average structure
factor amplitude curve in Figure 8 at about 30 Å,
well above the average amplitude given by
Wilson statistics, in the part of the amplitude
curve dependent on the overall shape of the
molecule and contrast against solvent. In theory,
this also represents the limiting resolution that
would be obtained from studying a similar struc-
ture by tomography and fractionation of the total
dose. Tomography is likely to provide information
on overall shape, but averaging similar structures
is essential to obtain higher resolution features.

The number of particle images used to reach
8.7 Å resolution in this study may be compared
with recent theoretical estimates.1,30 In one such
estimate,1 the number of images, Npart, required to

a resolution d is given by NinprojðpD=NasymdÞ
where Ninproj is the number of images needed for
the average structure factor intensity in each
projection to reach a threshold signal-to-noise
ratio, and pD=Nasymd is the number of unique pro-
jections for a particle of diameter D containing
Nasym asymmetric units. Because the signal-to-
noise ratio of the average structure factor in an
image is the same as in the corresponding electron
diffraction pattern,14 Ninproj may be estimated by
requiring a minimum signal-to-noise ratio for the
average structure factor intensity of the electron
diffraction pattern. Ninproj is given by
ðkSl2=kNl2Þ=ððkIobsl=IoÞD2NeÞ, where kSl2=kNl2 is the
average number of electrons required in each
structure factor (noting that a single electron
recorded in a structure factor has a signal-to-noise
ratio of 1), and the denominator is equal to the
number of electrons in the average structure factor
in a single low-dose image. The incident number
of electrons is D 2Ne where Ne ¼ 5 e2=Å2 is the
allowed dose and D 2 is the area of the particle (or
unit cell), and kIobsl=Io ¼ se=30D is the mean struc-
ture factor intensity as a fraction of the incident
number of electrons,1 where se ¼ 0.004 Å2 is the
elastic cross-section for carbon at 300 kV.31 Thus
the total number of particles Npart ¼
ð1=NasymÞððkSl2=kNl2Þ30p=NesedÞ: Previously, a 3s
criterion for the signal-to-noise ratio on amplitudes
(kSl2=kNl2 ¼ 10; where kSl and kNl are the signal
and noise for the map computed from all the data)
was chosen as a conservative criterion for estimat-
ing Ninproj, and the images were assumed to have
perfect contrast. In the present study, we have
shown that a resolution criterion related to map
interpretability has kSl=kNl ¼ 1=

ffiffiffi

3
p

at the
resolution limit of the map. This reduces the num-
ber of images required to any given resolution by
a factor of 30. In addition, the effect of contrast
loss described by Gaussian decay leads to an
increase in the required number of images by a
factor ðeðBoverall=4d2ÞÞ2: For B ¼ 1000 Å2 measured in
this study, the theoretical estimate of the number
of particles for 8.7 Å is 2200 particles, slightly
more than half the number used in the experiment,
3667 (Figure 11).
The theoretical calculation assumes an electron

dose of (5 e2/Å2) which is likely to be the limiting
dose due to radiation damage for features near
atomic resolution. The electron dose used in the
experiment (18 e2/Å2) is three to four times this
limiting dose. While the extra dose does not con-
tribute to structure factor amplitudes near atomic
resolution, it may have enhanced the signal up to
the resolution limit of the final map and made
determination of particle parameters easier. If the
experimental electron dose is used in the calcu-
lation, the number of particles required by theory
to 8.7 Å is decreased by a factor of 3–4, and the
number of experimental images then exceeds the
theoretical number by a factor of 6–8, even after
accounting for the loss of contrast by a Gaussian
fall-off. The best way to determine the more

   

 

 

 

 

 

 

 

 

Figure 11. Estimate of the number of icosahedral
images required as a function of resolution. The continu-
ous line with B ¼ 1000 Å2 is the fit of the amplitude
decay in Figure 8, but with the amplitude expressed in
particle numbers. A single point (white circle) represents
the resolution of the map obtained in this study with
3600 particle images. Calculated curves (dotted lines)
for 500, 200, and 125 Å2 assume the same zero angle
intercept in agreement with Wilson statistics. Theoretical
estimate of the number of particle images Npart ¼
ð1=NasymÞ½ðkSl2=kNl2Þ30p=Nesed% eB=2d

2
required to 8.7 Å

resolution assuming kSl=kNl ¼ 1=
ffiffiffi

3
p

and B ¼ 1000 Å2,
se ¼ 0.004 Å2, Ne ¼ 5 e2/Å2, and Nasym ¼ 60 is 2200 par-
ticles (black circle).

Single-particle Cryomicroscopy 739

PDH

Rosenthal and Henderson 2003



an identical intercept at zero angle ðd ¼ 1Þ where
the temperature factor has no effect and which cor-
responds to the amplitude expected for Wilson
statistics.

The extrapolated noise level (F ¼ 6028.8) for one
particle image intersects the average structure
factor amplitude curve in Figure 8 at about 30 Å,
well above the average amplitude given by
Wilson statistics, in the part of the amplitude
curve dependent on the overall shape of the
molecule and contrast against solvent. In theory,
this also represents the limiting resolution that
would be obtained from studying a similar struc-
ture by tomography and fractionation of the total
dose. Tomography is likely to provide information
on overall shape, but averaging similar structures
is essential to obtain higher resolution features.

The number of particle images used to reach
8.7 Å resolution in this study may be compared
with recent theoretical estimates.1,30 In one such
estimate,1 the number of images, Npart, required to

a resolution d is given by NinprojðpD=NasymdÞ
where Ninproj is the number of images needed for
the average structure factor intensity in each
projection to reach a threshold signal-to-noise
ratio, and pD=Nasymd is the number of unique pro-
jections for a particle of diameter D containing
Nasym asymmetric units. Because the signal-to-
noise ratio of the average structure factor in an
image is the same as in the corresponding electron
diffraction pattern,14 Ninproj may be estimated by
requiring a minimum signal-to-noise ratio for the
average structure factor intensity of the electron
diffraction pattern. Ninproj is given by
ðkSl2=kNl2Þ=ððkIobsl=IoÞD2NeÞ, where kSl2=kNl2 is the
average number of electrons required in each
structure factor (noting that a single electron
recorded in a structure factor has a signal-to-noise
ratio of 1), and the denominator is equal to the
number of electrons in the average structure factor
in a single low-dose image. The incident number
of electrons is D 2Ne where Ne ¼ 5 e2=Å2 is the
allowed dose and D 2 is the area of the particle (or
unit cell), and kIobsl=Io ¼ se=30D is the mean struc-
ture factor intensity as a fraction of the incident
number of electrons,1 where se ¼ 0.004 Å2 is the
elastic cross-section for carbon at 300 kV.31 Thus
the total number of particles Npart ¼
ð1=NasymÞððkSl2=kNl2Þ30p=NesedÞ: Previously, a 3s
criterion for the signal-to-noise ratio on amplitudes
(kSl2=kNl2 ¼ 10; where kSl and kNl are the signal
and noise for the map computed from all the data)
was chosen as a conservative criterion for estimat-
ing Ninproj, and the images were assumed to have
perfect contrast. In the present study, we have
shown that a resolution criterion related to map
interpretability has kSl=kNl ¼ 1=

ffiffiffi

3
p

at the
resolution limit of the map. This reduces the num-
ber of images required to any given resolution by
a factor of 30. In addition, the effect of contrast
loss described by Gaussian decay leads to an
increase in the required number of images by a
factor ðeðBoverall=4d2ÞÞ2: For B ¼ 1000 Å2 measured in
this study, the theoretical estimate of the number
of particles for 8.7 Å is 2200 particles, slightly
more than half the number used in the experiment,
3667 (Figure 11).
The theoretical calculation assumes an electron

dose of (5 e2/Å2) which is likely to be the limiting
dose due to radiation damage for features near
atomic resolution. The electron dose used in the
experiment (18 e2/Å2) is three to four times this
limiting dose. While the extra dose does not con-
tribute to structure factor amplitudes near atomic
resolution, it may have enhanced the signal up to
the resolution limit of the final map and made
determination of particle parameters easier. If the
experimental electron dose is used in the calcu-
lation, the number of particles required by theory
to 8.7 Å is decreased by a factor of 3–4, and the
number of experimental images then exceeds the
theoretical number by a factor of 6–8, even after
accounting for the loss of contrast by a Gaussian
fall-off. The best way to determine the more

   

 

 

 

 

 

 

 

 

Figure 11. Estimate of the number of icosahedral
images required as a function of resolution. The continu-
ous line with B ¼ 1000 Å2 is the fit of the amplitude
decay in Figure 8, but with the amplitude expressed in
particle numbers. A single point (white circle) represents
the resolution of the map obtained in this study with
3600 particle images. Calculated curves (dotted lines)
for 500, 200, and 125 Å2 assume the same zero angle
intercept in agreement with Wilson statistics. Theoretical
estimate of the number of particle images Npart ¼
ð1=NasymÞ½ðkSl2=kNl2Þ30p=Nesed% eB=2d

2
required to 8.7 Å

resolution assuming kSl=kNl ¼ 1=
ffiffiffi

3
p

and B ¼ 1000 Å2,
se ¼ 0.004 Å2, Ne ¼ 5 e2/Å2, and Nasym ¼ 60 is 2200 par-
ticles (black circle).
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Cx I
HBV

Bgal

80S ribo

Structure     # particles    # asym units    Resolution 
                                                                        (Å) 
HBV                   1078          64680                 4.2   

80S ribo*           35813        35813                  4.5 

Beta Gal            25101       100404                 4.2 

ComplexI           25373         25373                 4.9 
                           
* - Bai et al 2012         

PDH

No. of particles - B-factors



Orientation distribution



Paa Z - a bifunctional enzyme



4.2 Å, 66783 orientation accuracy - 1.3

Paa Z 





~9.7 Å, 36753, orientation accuracy - 2.48

Paa Z - map, with only three-fold view



5.1 Å, 30050, orientation accuracy - 1.6

Paa Z - map, with only side view



Four#informa*ve#valida*on#tests##(from#Fig.#5#Chen#et#al,#2013)#
Validation tests for an EM map



In practice - some thoughts when starting 
to process data

• Perform 2D class averaging before 3D reconstruction! 
– Powerful means of cleaning data set 
– Quality of classes -> quality reconstruction! (when using direct detectors high 

resolution structural features - alpha helices are already observed) 
– Play with number of classes 

• Cryo-EM: 100-200 particles/class 
• Negative stain: <50 particles/class 

• Check for 3D heterogeneity! 
– Remember: proteins are machines, highly dynamic … 
– Again: play with number of classes (some biochemical knowledge can be 

used to determine the classes but also to interpret if the classes are 
biologically meaningful) 

• Smaller, high-quality data sets are often better than large and dirty 
ones 
– Cheaper computationally 
– Cleaner reconstructions 
– final B-factor of map is a useful measure for the quality of the data
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