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Cryo-EM images - reality
» Electrons damage biological material
— Low dose: large amounts of noise!

« We need to defocus to get contrast

— Strong artefacts (CTF) [a good phase plate will solve
this]

« We can’t control how the particles fall on the grid
— Unknown orientations & classes

Inverse, Incomplete, lll-posed problems



Inverse problem

The forward model (in real-space)

X =CTF,®P V,+ N,

Given V, ¢ and CTF, we can simulate X very well.

SPEMS - Single particle electron microscopy simulation
(Greg McMullan unpublished)

But the opposite is very difficult.



Incomplete data problems

« Part of the data was not observed experimentally
— Orientations
— Class assignments

« Difficult to solve!
— |terative methods?

« Complete data problem would be very easy to solve



Incomplete data problems

Observed data (X): images
Missing data (Y): orientations




Complete data problems

white Gaussian noise

L(®)=P(Xx|0O)

gMLE _ 1\ v

Observed data (X): images




Incomplete data problems

* Option 1: add Y to the model __.

L(Y,0)=P(X|Y,0)

e Option 2: marginalize over Y %-

L(©) = P(X|0©)= [P(X|Y,0)P(Y|© }id

Probability of X,
regardless Y




The maxCC approach



Reference-based alignment

« Starts from some initial guess about the structure
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Align and average




Align and average

Iterate!




The ML approach

Single-reference alignment in real-space
Sigworth, J. Struct.Biol. 1998



Maximum likelihood

Statistical model

. P(X,10,0)




Maximum likelihood

A( n) X Statistical model
AT Do not assign discrete
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noise in the data does
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Incomplete data problems

* Option 1: add Y to the model

L(Y,0)=P(X|Y,0)

* Option 2: marginalize over Y

L(©) = P(X|©) = [P(X|Y,0)P(Y|© }if

Probability of X,
regardless Y



Incomplete data problems

In the limit of noiseless data the
Two techniques are equivalent!

—=

Scheres et al Methods in Enzymology, 482 (2010)



Projection matching




Projection matching




3D reconstruction




3D reconstruction
(Iterative refinement)




Ilterative refinement




3D ML refinement

“Probability-weighted angular assignment”



Initial model

Local optimizer! \/

— Gets stuck in nearest local minimum
— (as most other approaches in the field)

Need an initial model (see next lecture)
— Start from random angles will often NOT work
— (unlike the 2D case)

Bad model in -> bad model out!!!
— Model bias
— Bad common-lines models are notoriously difficult

Stochast|0|ty
Randomly perturb optimisation (a la Simulated Annealing in X-ray)
— Can potentially reach global minimum
— Do refine from random blobs
— SIMPLE (Hans EImlund), EMAN2Z2 (Steve Ludtke)



Fourier-space formulation

CTF correction



CTF-correction




Projection slice theorem
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Data model

Real-space
X =CTE,®P V. + N,

Convolute w/ CTF
P, implements integrals

N;describes white noise

* Fourier space
X = CTF,.PCPVk+ N,

« Multiply w/ CTF
. P(p takes a slice

« N.describes coloured noise



Coloured noise model

for each >
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2D-Gaussian o
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plane
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resolution-dependent noise model!

Scheres et al. (2007) Structure
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lll-posedness

The experimental data alone is not enough to determine a
unigque solution!

There are many noisy reconstructions that describe the data
equally well...

Danger of incorrect interpretation...



By incorporating external information, a different problem
may be solved for which a unique solution does exist!

Regularization
Conventional regularization approaches

— Wiener filtering
— Low-pass filtering



Ad-hoc regularisation
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Low-pass filter the map
at every iteration

Many different ways and implementations...



A Bayesian view on regularization

po| x) - X 19)P©)
PX)

Likelihood * Prior

Posterior =
Evidence

Regularised likelihood optimisation - RELION

Scheres 2012



Likelihood

* Assume noise is Gaussian and independent

— In Fourier space

— with spectral power o2(u): coloured noise

P(X,|k,$,0)= H

2750
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Prior

* Assume signal is Gaussian and independent
* In Fourier space
 Limited power 12(u): smoothness in real space!

1
P(O) = ex
©) H2m:k, p<—217,f,




Expectation maximization

N
E fr<">PT CTFI LX.do
(D) _ =1 5 Wiener (optimal) filter for CTF-
N CTF2 1 corrected 3D reconstruction /
E F(")PT dd + 2D class averages
2( n) 7(n)

=1 "¢ l

2 5, Estimate resolution-dependent
d(i) power of noise from the data

X,-CTEP, V™

2(n+1) 1 (n)
O, = Efrzq)
0

2+l HV(n) Estimate resolution-dependent
power of signal from the data
(n) (n)
it =

[P(X;19'.0")P©'10")d¢'
)

Scheres 2012



Structure L
: J

: (1)
“Alignment” < £\ Expectation r .
1
. . ) 4
S ..
"CB' “Orientations” c
T O n
55

TR,
25 3
O @ L6
EE |, «— | Eo
(U — E
) Cw
O -
> o
LLI Bayes’ law

y

“Smooth reconstruction”| — Maximization
A 4
iterate

[ New Structure }

Scheres 2012



 3D-EM refinement

nverse problem: needs iterating
— ncomplete problem: needs marginalizing
— lll-posed problem: needs regularizing

* Regqularised likelihood approach
— Does all 3 things in optimizing a single function!
— 2D classes, 3D classes or 3D refinement
— “Learns” optimal parameters from the data
— Few ad-hoc parameters to tune by the user



Software -EM

EMAN - Electron Micrograph Analysis, multipurpose

FREALIGN - only refinement and reconstruction (ML in classification)
IMAGIC - multipurpose, ab-initio

SPIDER - multipurpose

SPARX - multipurpose and robust clustering

Xmipp - multipurpose, uses ML in many steps

RELION - classification, refinement and reconstruction, uses ML
SIMPLE/PRIME - multipurpose, ab-initio

Bsoft - multipurpose



3D refinement: practical problems

overfitting
IS my refinement improving ?
how many particles do | need to get ‘X’ A resolution?

resolution doesn’t improve despite adding more
particles

orientation distribution

validation



verfitting: refinement of noise
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Overfitting: refinement of noise

Map from noise Map from real particles
(red circles) (blue circles)



Overfitting: refinement of noise

Map from noise Map from real particles
(red circles) (blue circles)



High-resolution

micrograph

noise substitution/phase randomisation

Ln(Radial power)

—— 3200 particles
—— 3200 backgrounds
—— part - back
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Chen et al., 2013



High-resolution noise substitution/phase randomisation
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Gold-standard refinement
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The pitfalls of undetected overfitting

« 20,000 simulated GroEL particles

« Conventional projection matching

Reported FSC

p.

FSC vs trutl'i 4.6A
7.8A

Scheres and Chen 2012
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experimental

FSC between map and (perfect) model
at FSC =0.5

FSC between two independent half data
sets at FSC = 0.143

Rosenthal and Henderson 2003



R-galactosidase
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Overfitting within the half-maps




Refinement: Improvement of map

Orientation accuracy -999 deg Orientation accuracy, 0.9 deg

50 A 4.5 A
start final






Resolution: features that are visible




No. of particles - B-factors

Btotal = Bimage + Bcomputational

Npart = (1/Nasym)[(<S>2/<N>2)301r/Nesed]eB/2d2

Rosenthal and Henderson 2003
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No. of particles - B-factors
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Orientation distribution



Paa Z - a bifunctional enzyme




Paa Z

4.2 A, 66783 orientation accuracy - 1.3






Paa Z - map, with only three-fold view

~9.7 A, 36753, orientation accuracy - 2.48



Paa Z - map, with only side view

5.1 A, 30050, orientation accuracy - 1.6



Validation tests for an EM map
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In practice - some thoughts when starting
to process data

« Perform 2D class averaging before 3D reconstruction!

— Powerful means of cleaning data set

— Quality of classes -> quality reconstruction! (when using direct detectors high
resolution structural features - alpha helices are already observed)

— Play with number of classes
* Cryo-EM: 100-200 particles/class
» Negative stain: <50 particles/class

« Check for 3D heterogeneity!
— Remember: proteins are machines, highly dynamic ...

— Again: play with number of classes ﬁsome biochemical knowledge can be
used to determine the classes but also to interpret if the classes are

biologically meaningful)

« Smaller, high-quality data sets are often better than large and dirty
ones
— Cheaper computationally
— Cleaner reconstructions
— final B-factor of map is a useful measure for the quality of the data
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