Methods in orientation determination

K.R.Vinothkumar MRc Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology LMB cryo EM course

Image processing workflow

Micrograph

Reference free 2D class average

orientation determination, refinement reconstruction

Projection slice theorem

Penczek 2010

Projection matching

3D Reconstruction

Cryo-EM images - reality

- Electrons damage biological material
 - Low dose: large amounts of noise!
- We need to defocus to get contrast
 - Strong artefacts (CTF) [a good phase plate will solve this]
- We can't control how the particles fall on the grid
 - Unknown orientations & classes

Inverse, Incomplete, III-posed problems

Inverse problem

The forward model (in real-space)

$$X_i = \operatorname{CTF}_i \otimes \mathbf{P}_{\varphi} V_k + N_i$$

Given V, ϕ and CTF, we can simulate X very well.

SPEMS - Single particle electron microscopy simulation (Greg McMullan unpublished)

But the opposite is very difficult.

Incomplete data problems

- Part of the data was not observed experimentally
 - Orientations
 - Class assignments
- Difficult to solve!
 - Iterative methods?
- Complete data problem would be very easy to solve

Incomplete data problems

Not easy

Observed data (X): images Missing data (Y): orientations

Complete data problems

Incomplete data problems

• Option 1: add Y to the model

$$L(Y,\Theta) = P(X | Y,\Theta)$$

Option 2: marginalize over Y ____

Maximum Likelihood

$$L(\Theta) = P(X | \Theta) = \int_{Y} P(X | Y, \Theta) P(Y | \Theta) d\phi$$

Probability of X,
regardless Y

The maxCC approach

Reference-based alignment

• Starts from some initial guess about the structure

Align and average

Align and average

The ML approach

Single-reference alignment in real-space Sigworth, J. Struct.Biol. 1998

Maximum likelihood

Maximum likelihood

Incomplete data problems

• Option 1: add Y to the model

$$L(Y,\Theta) = P(X | Y,\Theta)$$

• Option 2: marginalize over Y

$$L(\Theta) = P(X | \Theta) = \int_{Y} P(X | Y, \Theta) P(Y | \Theta) d\phi$$

Probability of X,
regardless Y

Incomplete data problems

Scheres et al Methods in Enzymology, 482 (2010)

Projection matching

Projection matching

3D reconstruction

3D reconstruction (Iterative refinement)

Iterative refinement

3D ML refinement

"Probability-weighted angular assignment"

Initial model

- Local optimizer!
 - Gets stuck in nearest local minimum
 - (as most other approaches in the field)
- Need an initial model (see next lecture)
 - Start from random angles will often NOT work
 - (unlike the 2D case)
- Bad model in -> bad model out!!!
 - Model bias
 - Bad common-lines models are notoriously difficult
- Stochasticity
 - Randomly perturb optimisation (á la Simulated Annealing in X-ray)
 - Can potentially reach global minimum
 - Do refine from random blobs
 - SIMPLE (Hans Elmlund), EMAN2 (Steve Ludtke)

Fourier-space formulation

CTF correction

CTF-correction

Not CTF corrected

Projection slice theorem

Data model

• Real-space

- Convolute w/ CTF
- \mathbf{P}_{ϕ} implements integrals
- *N_i* describes white noise

• Fourier space

$$\boldsymbol{X}_i = \mathrm{CTF}_i \boldsymbol{P}_{\varphi} \boldsymbol{V}_k + \boldsymbol{N}_i$$

- Multiply w/ CTF
- \mathbf{P}_{ϕ} takes a slice
- *N_i* describes coloured noise

Coloured noise model

Assuming independence of noise between all Fourier terms:

$$P(X_{i} | k, \phi, \Theta) = \prod_{j=1}^{J} \frac{1}{2\pi\sigma_{ij}^{2}} \exp\left(\frac{\left|CTF_{ij} \left[\mathbf{P}_{\phi} V_{k}\right]_{j} - X_{ij}\right|^{2}}{-2\sigma_{ij}^{2}}\right)$$

resolution-dependent noise model!

Scheres et al. (2007) Structure

Coloured noise!!

III-posedness

- The experimental data alone is not enough to determine a unique solution!
- There are many noisy reconstructions that describe the data equally well...
- Danger of incorrect interpretation...

- By incorporating external information, a different problem may be solved for which a unique solution does exist!
- Regularization
- Conventional regularization approaches
 - Wiener filtering
 - Low-pass filtering

Ad-hoc regularisation

Many different ways and implementations...

A Bayesian view on regularization

Posterior = Likelihood * Prior Evidence

Regularised likelihood optimisation - RELION

Scheres 2012

Likelihood

- Assume noise is Gaussian and independent
 - in Fourier space
 - with spectral power $\sigma^2(\upsilon)$: coloured noise

$$P(X_i \mid k, \phi, \Theta) = \prod_{j=1}^{J} \frac{1}{2\pi\sigma_{ij}} \exp\left(\frac{\left\|X_{ij} - \operatorname{CTF}_{ij}(\mathbf{P}_{\phi}V_k)_j\right\|^2}{-2\sigma_{ij}^2}\right)$$

Prior

- Assume signal is Gaussian and independent
 - in Fourier space
 - Limited power τ²(υ): smoothness in real space!

$$P(\Theta) = \prod_{l} \frac{1}{2\pi\tau_{kl}} \exp\left\{\frac{\left\|V_{kl}\right\|^{2}}{-2\tau_{kl}^{2}}\right\}$$

Expectation maximization

$$V^{(n+1)} = \frac{\sum_{i=1}^{N} \int_{\phi} \Gamma_{i\phi}^{(n)} \mathbf{P}_{\phi}^{T} \frac{\text{CTF}_{i}}{\sigma_{i}^{2(n)}} X_{i} d\phi}{\sum_{i=1}^{N} \int_{\phi} \Gamma_{i\phi}^{(n)} \mathbf{P}_{\phi}^{T} \frac{\text{CTF}_{i}^{2}}{\sigma_{i}^{2(n)}} d\phi + \frac{1}{\tau^{2(n)}}} \xrightarrow{\text{Wiener (optimal) filter for CTF-corrected 3D reconstruction / 2D class averages}}$$

$$\sigma_{i}^{2(n+1)} = \frac{1}{2} \int_{\phi} \Gamma_{i\phi}^{(n)} \left\| X_{i} - \text{CTF}_{i} \mathbf{P}_{\phi} V^{(n)} \right\|^{2} d\phi \xrightarrow{\text{Estimate resolution-dependent power of noise from the data}}$$

$$\tau^{2(n+1)} = \frac{1}{2} \left\| V^{(n)} \right\|^{2} \xrightarrow{\text{Estimate resolution-dependent power of signal from the data}}$$

$$\Gamma_{i\phi}^{(n)} = \frac{P(X_{i} | \phi, \Theta^{(n)}) P(\phi | \Theta^{(n)})}{\int_{\phi'} P(X_{i} | \phi', \Theta^{(n)}) P(\phi' | \Theta^{(n)}) d\phi'}$$

Scheres 2012

Scheres 2012

- 3D-EM refinement
 - Inverse problem: needs iterating
 - Incomplete problem: needs marginalizing
 - III-posed problem: needs regularizing

- Regularised likelihood approach
 - Does all 3 things in optimizing a single function!
 - 2D classes, 3D classes or 3D refinement
 - "Learns" optimal parameters from the data
 - Few ad-hoc parameters to tune by the user

Software -EM

EMAN - Electron Micrograph Analysis, multipurpose

FREALIGN - only refinement and reconstruction (ML in classification)

IMAGIC - multipurpose, ab-initio

SPIDER - multipurpose

SPARX - multipurpose and robust clustering

Xmipp - multipurpose, uses ML in many steps

RELION - classification, refinement and reconstruction, uses ML

SIMPLE/PRIME - multipurpose, ab-initio

Bsoft - multipurpose

3D refinement: practical problems

- overfitting
- is my refinement improving ?
- how many particles do I need to get 'X' Å resolution?
- resolution doesn't improve despite adding more particles
- orientation distribution
- validation

Overfitting: refinement of noise

Overfitting: refinement of noise

Map from noise (red circles) Map from real particles (blue circles)

Overfitting: refinement of noise

Map from noise (red circles) Map from real particles (blue circles)

High-resolution noise substitution/phase randomisation

micrograph

Chen et al., 2013

High-resolution noise substitution/phase randomisation

Chen et al., 2013

Gold-standard refinement

The pitfalls of undetected overfitting

- 20,000 simulated GroEL particles
- Conventional projection matching

FSC between map and (perfect) model at FSC = 0.5

FSC between two independent half data sets at FSC = 0.143

ß-galactosidase

map vs model FSC (----) map vs model FSC (----)

Overfitting within the half-maps

Refinement: Improvement of map

Orientation accuracy -999 deg 50 Å start Orientation accuracy, 0.9 deg 4.5 Å final

Resolution: features that are visible

No. of particles - B-factors

Rosenthal and Henderson 2003

No. of particles - B-factors

Rosenthal and Henderson 2003

Orientation distribution

Paa Z - a bifunctional enzyme

Paa Z

4.2 Å, 66783 orientation accuracy - 1.3

Paa Z - map, with only three-fold view

~9.7 Å, 36753, orientation accuracy - 2.48

Paa Z - map, with only side view

5.1 Å, 30050, orientation accuracy - 1.6

Validation tests for an EM map

In practice - some thoughts when starting to process data

- Perform 2D class averaging before 3D reconstruction!
 - Powerful means of cleaning data set
 - Quality of classes -> quality reconstruction! (when using direct detectors high resolution structural features - alpha helices are already observed)
 - Play with number of classes
 - Cryo-EM: 100-200 particles/class
 - Negative stain: <50 particles/class
- Check for 3D heterogeneity!
 - Remember: proteins are machines, highly dynamic ...
 - Again: play with number of classes (some biochemical knowledge can be used to determine the classes but also to interpret if the classes are biologically meaningful)
- Smaller, high-quality data sets are often better than large and dirty ones
 - Cheaper computationally
 - Cleaner reconstructions
 - final B-factor of map is a useful measure for the quality of the data

Further Reading

- Penczek, Fundamentals of Three-Dimensional Reconstruction from Projections, Methods in Enzymology, , 482 (2010) p 1
- Penczek, Image restoration in cryo-electron microscopy, Methods in Enzymology, , 482 (2010) p 35
- Sigworth, Doerschuk, Carazo & Scheres, An Introduction to Maximum-Likelihood Methods in Cryo-EM, *Methods in Enzymology*, 482 (2010) p 263
- Scheres, Classification of Structural Heterogeneity by Maximum-Likelihood Methods, *Methods in Enzymology*, **482** (2010) p 295
- Rosenthal & Henderson, Optimal determination of particle orientation, Absolute Hand, and Contrast Loss, J.Mol.Biol., **333** (2003), p 721
- Scheres, A Bayesian View on Cryo-EM structure determination, J.Mol.Biol., 415 (2012) p 406
- Scheres, RELION: Implementation of a Bayesian approach to cryo-EM structure determination, J.Stru.Biol., 180 (2012) p 519