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Three dimensional reconstruction of 
objects from their projections
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Two-dimensional projection from three-dimensional object

One-dimensional projection from two dimensional object

Medical X-ray images, Ultra sound images, EM images  
may be considered as  2D projections of objects

Medical X-ray scans present 1D projections of the 
object 

Medical X-ray images
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Here is a reversed problem:

How from projections can be restored 
three-dimensional distribution of densities?

It has been shown by J. Radon (Germany) in 1917 that it is 
possible to restore 3D distribution of densities using a 
continuous set of 1D projections. The operation obtained  a 
name:

REVERSED RADON TRANSFORMATION

J. Radon has demonstrated a theoretical solution of the 
problem. A practical realization of the solution came much 
later and for the first time in medical tomography. Then some 
methods were developed in astrophysics. Electron 
microscopy started to develop methods in later 70th. 

Why people do not use
the analytical result obtained by Radon?

1. All samples both in medicine and electron microscopy are 
very sensitive to the penetrating radiation. Therefore it is 
impossible to take a large number of images. We do not 
have a complete continuous set of projections.

2. A range of angles where projections are obtained does not 
cover the Euler sphere completely. 

3. In medical tomography  the X-Ray beam is not parallel.

Electron microscopy has some advantages :

• In vitrified samples molecules are oriented very often 
randomly and therefore possible orientations can cover 
Euler sphere  rather evenly.

• Some molecules have symmetry that can be used.



Back projection

Filtered back projection –
- convolution method

Algebraic reconstruction methods

Part 1
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Algebraic reconstruction methods

The number of equations is the number 
of pixels within the projection times the 
number of projections   

Dj = xij;  1< i < N

1< j < K

K - number of pixels in 
horizontal direction 
N - number of pixels in  
vertical direction
j - column index 
i - row index 

Number of unknown 
density pixels Xij = N X K 

Dj
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xi – estimated projection density 

pi – calculated projection density 
di – measured projection density 

wij – weight of the pixel : 1  or 0 

Algebraic ReconstructionTechnique

SIRT –was proposed by Gilbert in 1972. Estimated densities are corrected 
using the discrepancy between all real and estimated projections in one 
round.

For the cube with the size of 100 pixels the 
number of voxels is 1003 . The number of 
projections is in the best case ~ 2000.  Very 
often it is  much less. The exact solution is 
impossible, though  iterative methods are 
able to fine an approximate solution.

Simultaneous IterativeReconstructionTechniqueSimultaneous IterativeReconstructionTechnique
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The methods give fast and reasonable solution if there are 
only few projections, or it will be a two-dimensional problem
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Algebraic reconstruction methods
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The number of unknowns (NxKxL)  in the  set 
of equations is the number of voxels in the 
object (L = number of slices through the 
object).

The Algebraic Reconstruction Technique (ART), developed by R. Gordon 
(A tutorial on ART, 1974, IEEE Trans. NS-21, 78-93). The principle of the 
algorithm is based on iterative refinement of the initial estimation of Xij 
using comparison calculated reprojections with real projections. The 
difference between them is used to modify values of Xij.

Algebraic reconstruction methods

Additive 
methods –
correction of density 
estimation by adding 
differences between 
real and estimated 
projections

Multiplicative 
methods –
correction of density 
estimation by 
calculation of 
correction coefficients 
for estimated 
projections

Iterative 
relaxation
methods –
estimation of density 
has to satisfy a 
number of 
conditions.



Back projection

Back projection

Projection 1Projection 1

Projection 1Projection 1

Reconstruction ?Reconstruction ?



Back projection

The simplest algorithm has 
one serious limitation.

If we are reconstructing only 
one point, it will be surrounded 
by background that is 
proportional to 1/r, where r is 
the distance from the point. 
That background is 
proportional to intensity of the 
local point. It makes the whole 
reconstruction smeared.
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Point spread function

Estimation of reconstruction using back projection can be 
presented as  convolution of the object function with 1/r 
function for two dimensional and with 1/r2 for three 
dimensional object. 

est (r) = (r)  (1/r)                   for 2D

est (r) = (r)  (1/r2)                  for 3D

where  is the convolution operator

A general approach of solving  the problem is finding of a 

new function  F filt that will change the projections in such 

way, that reconstruction will give a good estimation of (r)




]d),('[)r( )(filt llp
o

est F 
There are several approximation of the function F filt and 
one of them is R filtering of back projections.



Back projection. How to overcome problems?
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Filtered back projection



Object

Back projection
180 projections

Filtered back projection

180 projections, equally distributed
HW (Hamming window) = 1.0

90 projections, 
equally distributed
HW = 1.0

36 projections

HW = 1.0 HW = 1.0 HW = 0.33

Randomly 
distributed 
projections

Reconstruction in frequency space = Fourier methods

The principle of the method is based on calculation 
Fourier transforms from projections, taken in many 
different directions. Since they are correspond to the 
central sections of 3D Fourier transform, it getting 
possible to recover a whole 3D transform. The 
reverse Fourier transform will provide distribution of 
densities within the object.

Fourier methods,
Fourier-Bessel functions

Part 2
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Fourier transform of the object r(x,y,z)

Central section of  the Fourier transform is a section through the 
origin of the system.  Let us guess, that it will be the plane XY

However, the result of this integration corresponds to the 
projection of the object on the plane xy

Real space

3D density
distribution

3D Fourier 
transform

2D projection
2D central

section

1D projection 1D central line

Fourier space
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stretch

stretch Extract

ExtractFill

Fill
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Fourier methods

Y

X

Central sections 
of Fourier space

1D projection

1D central line

2D projection

2D central section

stretching

fillingfilling



Fourier methods

We have values of Fourier transform 
along the central lines, that correspond 
to Fourier transform of projections. 
Using  interpolation we need to restore 
the discrete Fourier transform on each 
pixel of the grid. 
See Crowther et al., 1970

12
3

12
3

Reconstruction in frequency space = Fourier methods
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Evaluation of quality of 3D reconstructions 
A resolution criterion

A  final result of  image analysis of single particles will be a 
three dimensional map of density distribution. 

How can we check the size of details which are reliable and 
which reflect noise ? The minimal size of reliable details is 
used to indicate the resolution of the reconstruction obtained.

We can compare two structures by calculating their correlation. 
However  CCF is not sensitive to the fine details, it depends 
mainly on the  large details and on the shape of the molecule. 
In crystallography it is common to use Fourier space to 
evaluate the resolution of the structure where resolution is 
specified by the distance of the  highest order reflections from 
the  central peak.         

Part 3

resolved unresolvedRayleigh criterion

Evaluation of resolution in images

http://www.olympusfluoview.com/java/resolution3d/index.html

When the separation distance (D) between adjacent Airy patterns is greater than 
the central disk radius (r), the sum of the intensities yields two individual peaks. 
As the disks approach each other, the separation distance will reach a value equal 
to the central disk radius, a condition known as the Rayleigh criterion. At even 
closer approach, the separation distance is less than the central disk radius and 
the sum of the two peaks merges into a single peak. In the latter instance, the two 
Airy patterns are said not to be resolved.

Sin (ΘR) = 1.22 λ/ d , 
where D = Sin (ΘR ); λ – wave length; d – aperture if the imaging system

D



Evaluation of resolution in crystallography

R

Resolution = 1/R, where R is a spatial frequency

Evaluation of resolution in crystallography

R



However,  a 3D reconstruction of the single molecule does 
not have  any periodicity. That makes impossible 
distinguishing signal and noise in the Fourier spectrum from 
one reconstruction.  It was suggested to compare Fourier 
spectra of several independent reconstructions.

SSNR - Spectral signal-to-noise ratio (Steven et al, S2/N2) 
The  approach is statistical analysis of spectra of 
several reconstrucions (Unser, M. et al., 1987).

The other which is more popular compares spectra of two 
independent reconstructions. There are following criteria 
used more often to evaluate their similarity :

1. Fourier ring correlation (van Heel, Saxton and Baumeister)

Cross-correlation coefficient  (single particle)
plot out full curve
resolution at 0.5 cross-correlatio
resolution at 3*sigma (noise)
interpretable at 0.15 cross-correlation, unless overfitted

2. The differential phase residual  ( J. Frank) Phase residual  
(2D crystal & single particle) each measurement vs. 
average of all comparable divide data into two halves, 
average and plot difference



Fourier Ring/Shell Correlation

Saxton & Baumeister 
(1982)

Van Heel et al. (1982)
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Overzealous attempts to get a high resolution structure
and problems related 

A

DB

C

Mao Y, et al. Molecular architecture of the uncleaved HIV-1 
envelope glycoprotein trimer. (2013) Proc Natl Acad Sci USA 
110(30); 12438–12443.

(A–F) Individual images of particles from the stack of 423 (21). 

(G) Average of 423 windowed images using the same grey scale as A–F. 

(H) Average of 423 windowed images with increased contrast. The density in the 

central region of G and H shows the average of the many views used in particle 

picking. The circle of dark density round the edge of the average, seen more 

clearly in H should not be present in the raw images so must arise from masked 

projections from the 3D map or model used to extract the particles. 

A DB

E

C

GF H

Henderson R. Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise 
(2013) Proc Natl Acad Sci U S A. Nov 5;110(45):18037-41



(I–L) Difference maps obtained by subtraction of sections from the two 

independent half maps [i.e., maps calculated using only half the data, normally 

even and odd particles in the stack (18)] supplied by the authors (21). The four 

panels represent sections at different heights along the spike, viewed from the 

apex. The differences are confined to a sharply defined region with no gradation 

into the flat background. This clearly visible and relatively sharp mask serves to 

constrain any density to the region inside the mask during iterative refinement. 

Use of masking plus the same initial reference suggests how the apparent 

resolution was extended from 11 to 6 Å. All images are on the same scale, with 

a window size of 190 Å.

I KJ L

Henderson R. Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise 
(2013) Proc Natl Acad Sci U S A. Nov 5;110(45):18037-41

~44,000 single particle images of β-galactosidase (300 keV, FEI Falcon II detector) 
using four different procedures. The FSC from the particle data set (red) is compared 
in each case with that obtained from the same data set with HR-noise substituted 
beyond 10 Å (blue).
(a) Data out to 7 Å resolution was used in orientation determination, so the overfitting 
is only evident between 10 and 7 Å resolution. In this case, the very small degree of 
overfitting does not affect the estimated resolution. (b) Gold-standard FSC weighting 
was used with low-pass filtering of the reference at each cycle as described. There is 
no overfitting, confirmed by values of FSCn that are zero beyond 10 Å. The map 
shows 6.4 Å resolution.

Validation of 3D cryoEM maps

(Chen et al, Ultramicroscopy, 2013)



Validation of 3D cryoEM maps

Overfitting is shaded blue, with the difference between the two curves, 
representing correlations between real features of the structure, shaded 
pink. (Chen et al, Ultramicroscopy, 2013)

(c) The Xmipp package was used with a single reference and weighting to 
apply low-pass filtering at each cycle. (d) Results of processing the same 
data using a new program still (McMullan, unpublished) and configured to 
show substantial overfitting when refined out to 5 Å. 

Validation of 3D cryoEM maps



Resolution estimation Resmap

ResMap algorithm is based on
initializing a local-sinusoid model
at r = 2d, where d is the voxel
spacing in Å.

The likelihood-ratio test assess
whether a local-sinusoid wave is
can describe a local
approximation of the model.

The test requires an estimate
of the noise variance, which is
evaluated from the region
surrounding the structure.

The smallest r gives a local
resolution map with a number
assigned to every voxel in the
density map.

r noise

densities

D

Tobacco mosaic virus

D. Clare and E.Orlova, J Struct Biol. 2010 Sep;171(3):303-8



Common problems causing defects in 
reconstruction:

1. The number of projections is small and the pixel size is 
big

2. The angular range is not uniformly filled 
3. Signal/noise ratio is low
4. Projections are not centred
5. Angles are not accurate defined
6. Influence of data acquisition methods (related to #2)  
7. In EM the quality of reconstruction results depend on 

the quality of CTF correction
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